

Gaussian Approximation and Multiplier Bootstrap for Stochastic Gradient Descent

Marina Sheshukova¹, Sergey Samsonov¹ Denis Belomestny^{2,1}, Eric Moulines^{3,4}, Qi-Man Shao ⁵, Zhuo-Song Zhang⁵ Alexey Naumov^{1,6},

¹HSE University ²Duisburg–Essen University ³CMAP, UMR 7641, École Polytechnique ⁴Mohamed Bin Zayed University of Al ⁵Southern University of Science and Technology ⁶Steklov Mathematical Institute of the Russian Academy of Sciences

Stochastic Gradient Descent (SGD)

- We aim to estimate $\theta^* \in \arg\min_{\theta \in \mathbb{R}^d} f(\theta)$ with access only to the noisy gradients $\nabla F(\theta, \xi)$ such that $\nabla f(\theta) = \mathbb{E}_{\xi \sim \mathbb{P}_{\xi}} [\nabla F(\theta, \xi)]$. Here ξ is a noise variable with the distribution \mathbb{P}_{ξ} . We assume that θ^* is the unique minimizer.
- SGD with Polyak–Ruppert (PR) averaging:

$$\theta_{k+1} = \theta_k - \alpha_{k+1} \nabla F(\theta_k, \xi_{k+1}), \qquad \theta_0 \in \mathbb{R}^d, \tag{1}$$

$$\bar{\theta}_n = n^{-1} \sum_{k=0}^{n-1} \theta_k \ .$$
 (2)

• Polyak-Juditsky central limit theorem (see [2]) implies asymptotic normality

$$\sqrt{n}(\bar{\theta}_n - \theta^*) \stackrel{d}{\to} \mathcal{N}(0, \Sigma_\infty), \qquad n \to \infty ,$$

where the covariance matrix Σ_{∞} is minimax-optimal.

Key questions

- What is the rate of convergence in (3)?
- How can (3) be leveraged to construct confidence sets for θ^* , given that Σ_{∞} is unknown in practice?

To quantify convergence rates in (3), we employ convex distance, which is defined for random vectors $X, Y \in \mathbb{R}^d$ as

 $d_{\mathsf{C}}(X,Y) = \sup_{B \in \mathsf{C}(\mathbb{R}^d)} |\mathbb{P}(X \in B) - \mathbb{P}(Y \in B)|$, where $\mathsf{C}(\mathbb{R}^d)$ denotes the collection of convex subsets of \mathbb{R}^d .

Confidence sets based on Multiplier bootstrap procedure

• Let $\mathcal{W}^{n-1} = \{w_\ell\}_{1 \leq \ell \leq n-1}$ be i.i.d. random variables with distribution \mathbb{P}_w , each with mean $\mathbb{E}[w_1] = 1$ and variance $\text{Var}[w_1] = 1$. Assume \mathcal{W}^{n-1} is independent of $\Xi^{n-1} = \{\xi_\ell\}_{1 \leq \ell \leq n-1}$. Procedure is based on perturbing the trajectory (1)(see [1])

$$\begin{aligned} \theta_k^{\mathsf{b}} &= \theta_{k-1}^{\mathsf{b}} - \alpha_k w_k \{ \nabla f(\theta_{k-1}^{\mathsf{b}}) + g(\theta_{k-1}^{\mathsf{b}}, \xi_k) + \eta(\xi_k) \} \;, \quad k \geq 1 \;, \quad \theta_0^{\mathsf{b}} = \theta_0 \;, \\ \bar{\theta}_n^{\mathsf{b}} &= n^{-1} \sum_{k=0}^{n-1} \theta_k^{\mathsf{b}} \;, \quad n \geq 1 \;. \end{aligned}$$

Note that, when generating different weights w_k , we can draw samples from the conditional distribution of $\bar{\theta}_n^b$ given the data Ξ^{n-1} .

• The core principle: "bootstrap world" probabilities $\mathbb{P}(\sqrt{n}(\bar{\theta}_n^b - \bar{\theta}_n) \in B \mid \Xi^{n-1})$ are close to $\mathbb{P}(\sqrt{n}(\bar{\theta}_n - \theta^*) \in B)$ for $B \in C(\mathbb{R}^d)$.

Assumptions

A1. The function f is two times continuously differentiable and L_1 -smooth on \mathbb{R}^d . Moreover, we assume that f is μ -strongly convex on \mathbb{R}^d .

A2. For each $k \geq 1$, ζ_k admits the decomposition $\zeta_k = \eta(\xi_k) + g(\theta_{k-1}, \xi_k)$, where

- $\{\xi_k\}_{k=1}^{n-1}$ is a sequence of i.i.d. random variables on $(\mathsf{Z}, \mathcal{Z})$ with distribution \mathbb{P}_{ξ} , $\eta : \mathsf{Z} \to \mathbb{R}^d$ is a function such that $\mathbb{E}[\eta(\xi_1)] = 0$ and $\mathbb{E}[\eta(\xi_1)\eta(\xi_1)^{\mathsf{T}}] = \Sigma_{\xi}$. Moreover, $\lambda_{\min}(\Sigma_{\xi}) > 0$.
- The function $g: \mathbb{R}^d \times \mathsf{Z} \to \mathbb{R}^d$ satisfies $\mathbb{E}[g(\theta, \xi_1)] = 0$ for any $\theta \in \mathbb{R}^d$. Moreover, there exists $L_2 > 0$ such that for any $\theta, \theta' \in \mathbb{R}^d$, it holds that

$$||g(\theta,\xi) - g(\theta',\xi)|| \le L_2 ||\theta - \theta'|| \quad \text{and} \quad g(\theta^*,z) = 0 \quad \text{for all } z \in \mathbf{Z} . \tag{5}$$

There exist $C_{1,\xi}, C_{2,\xi} > 0$ such that \mathbb{P}_{ξ} -almost surely that $\|\eta(\xi)\| \leq C_{1,\xi}$ and $\sup_{\theta} \|g(\theta,\xi)\| \leq C_{2,\xi}$.

A3. There exist $L_3, \beta > 0$ such that for all θ with $\|\theta - \theta^*\| \leq \beta$, it holds

$$\|\nabla^2 f(\theta) - \nabla^2 f(\theta^*)\| \le L_3 \|\theta - \theta^*\|. \tag{6}$$

A4. The stochastic gradient $F(\theta, \xi) := \nabla f(\theta) + g(\theta, \xi) + \eta(\xi)$ is almost surely L_4 -co-coercive, that is, for any $\theta, \theta' \in \mathbb{R}^d$, it holds \mathbb{P}_{ξ} -almost surely that

$$L_4\langle F(\theta,\xi) - F(\theta',\xi), \theta - \theta' \rangle \ge ||F(\theta,\xi) - F(\theta',\xi)||^2.$$
(7)

Assumptions

A5. There exist constants $0 < W_{\min} < W_{\max} < +\infty$, such that $W_{\min} \le w_1 \le W_{\max}$ a.s. **A6**. Let $\alpha_k = c_0 \{k_0 + k\}^{-\gamma}$, where $\gamma \in (1/2, 1)$, an c_0 satisfies $c_0 W_{\max} \max(2L_4, \mu) \le 1$ and $k_0 \ge (\frac{2\gamma}{\mu c_0 W_{\min}})^{1/(1-\gamma)}$. **A7**. Number of observations n is large enough.

Non-asymptotic multiplier bootstrap validity

Theorem 1. Assume A1 - A7. Then with \mathbb{P} - probability at least 1 - 1/n, it holds

$$\sup_{B \in \mathsf{C}(\mathbb{R}^d)} |\mathbb{P}(\sqrt{n}(\bar{\theta}_n^\mathsf{b} - \bar{\theta}_n) \in B \mid \Xi^{n-1}) - \mathbb{P}(\sqrt{n}(\bar{\theta}_n - \theta^*) \in B)| \le \frac{C_1 \log n}{n^{\gamma - 1/2}}, \tag{8}$$

where C_1 are some problem-specific constants.

- The proof is based on the gaussian approximation in real and boostrap world.
- Key observation: instead of $\mathcal{N}(0, \Sigma_{\infty})$ we use $\mathcal{N}(0, \Sigma_n)$, where Σ_n is the covariance of the linearized recursion which correspond to (1) with additive noise $\eta(\xi_k)$ (see [3] for details).

Rate of convergence in the Polyak–Juditsky central limit theorem

A8(p) Conditions (i) and (ii) from **A2** holds. Moreover, there exists $\sigma_p > 0$ such that $\mathbb{E}^{1/p}[\|\eta(\xi_1)\|^p] \leq \sigma_p$. **A9** Suppose that $\alpha_k = c_0/(k_0 + k)^{\gamma}$, where $\gamma \in (1/2, 1)$, $k_0 \geq 1$, and c_0 satisfies $2c_0L_1 \leq 1$.

Theorem 2. Assume **A1**, **A3**, **A8**(4), **A9**. Then, with $Y \sim \mathcal{N}(0, I_d)$ it holds that

$$\mathsf{d}_{\mathsf{C}}(\sqrt{n}(\bar{\theta}_n - \theta^*), \Sigma_{\infty}^{1/2} Y) \le \frac{C_2}{n^{\gamma - 1/2}} + \frac{C_{\infty}}{n^{1 - \gamma}}, \tag{9}$$

where C_2 and C_{∞} are some problem-specific constants.

Lower bounds

Theorem 3. There exists the problem satisfying conditions **A1**, **A3**, **A8**(4),**A9**, such that with $Y \sim \mathcal{N}(0, I_d)$ for n large enough it holds that

$$\mathsf{d}_{\mathsf{C}}(\sqrt{n}(\bar{\theta}_n - \theta^*), \Sigma_{\infty}^{1/2} Y) \ge \frac{C_3}{n^{1-\gamma}} \,. \tag{10}$$

The bound (10) implies that $\sqrt{n}(\theta_n - \theta^*)$ cannot be approximated by $\mathcal{N}(0, \Sigma_\infty)$ faster than $1/n^{1-\gamma}$, and the rate in Equation (9) is tight for $\gamma \in [3/4, 1)$. This highlights the necessity of using Σ_n in the bootstrap result (Equation (8)).

Takeaways

- We prove the first non-asymptotic validity result for multiplier bootstrap in averaged SGD, with rate $n^{-(\gamma-1/2)}$ for $\gamma \in (1/2, 1)$;
- For strongly convex problems, we show a tight Gaussian approximation rate $n^{-1/4}$ in (3) with $\gamma = 3/4$.

Acknowledgement

This work was supported by the Ministry of Economic Development of the Russian Federation (code 25-139-66879-1-0003).

References

[1] Yixin Fang, Jinfeng Xu, and Lei Yang.

Online bootstrap confidence intervals for the stochastic gradient descent estimator. Journal of Machine Learning Research, 19(78):1–21, 2018.

[2] Boris T Polyak and Anatoli B Juditsky.

Acceleration of stochastic approximation by averaging.

 $SIAM\ journal\ on\ control\ and\ optimization,\ 30(4):838-855,\ 1992.$

[3] Marina Sheshukova, Sergey Samsonov, Denis Belomestny, Eric Moulines, Qi-Man Shao, Zhuo-Song Zhang, and Alexey Naumov. Gaussian approximation and multiplier bootstrap for stochastic gradient descent.

arXiv preprint arXiv:2502.06719, 2025.