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ABSTRACT
We develop new techniques for proving lower bounds on the least

singular value of random matrices with limited randomness. The

matrices we consider have entries that are given by polynomials of a

few underlying base random variables. This setting captures a core

technical challenge for obtaining smoothed analysis guarantees

in many algorithmic settings. Least singular value bounds often

involve showing strong anti-concentration inequalities that are

intricate and much less understood compared to concentration (or

large deviation) bounds.

First, we introduce a general technique for proving anti-concentration

that uses well-conditionedness properties of the Jacobian of a poly-

nomial map, and show how to combine this with a hierarchical

𝜀-net argument to prove least singular value bounds. Our second

tool is a new statement about least singular values to reason about

higher-order lifts of smoothed matrices and the action of linear

operators on them.

Apart from getting simpler proofs of existing smoothed analysis

results, we use these tools to now handle more general families

of random matrices. This allows us to produce smoothed analysis

guarantees in several previously open settings. These new settings

include smoothed analysis guarantees for power sum decompo-

sitions and certifying robust entanglement of subspaces, where

prior work could only establish least singular value bounds for fully

random instances or only show non-robust genericity guarantees.
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1 INTRODUCTION
Over the past two decades, there has been significant progress in

using algebraic methods for high-dimensional statistical estimation

(e.g., [2]). Techniques like tensor decomposition have been used

for parameter estimation in mixture models [3, 10, 14], shallow

neural networks [5, 25], stochastic block models [2], and more [26].

Recently, more sophisticated decomposition methods based on ten-

sor networks [21], circuit complexity [12] and algebraic geome-

try [12, 19] have given to rise to new algorithms for many problems

in high-dimensional geometry and parameter estimation. These

algorithms start by building appropriate algebraic structures that

“encode” the hidden parameters of interest. Then, they use the alge-

braic techniques described above for recovering the solution.

Unfortunately, in most of these applications, the recovery prob-

lem turns out to be NP hard in general. So the algorithms have

provable recovery guarantees only under certain algebraic condi-
tions. Typically, these conditions can be formulated in terms of

appropriately defined matrices being well-conditioned, i.e., having

a non-negligible least singular value. Furthermore, the least singu-

lar value determines the sample complexity and running time, and

so it is important to obtain inverse polynomial bounds.

Now it is natural to ask: do the algebraic conditions typically hold?
Due to NP hardness, we know there exist parameters for which the

conditions do not hold. But how common or rare are such parameter
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settings/instances? A strong way to address this question is via the

framework of smoothed analysis, developed in the seminal work

of Spielman and Teng [23, 27, 28]. A condition is said to hold in

a smoothed analysis setting if for any instance, a small random

perturbation of magnitude, say 𝜌 = 1/𝑛2, where 𝑛 is the input

size, results in an instance that satisfies the condition with high

probability. Smoothed analysis guarantees show that any potential

bad instance is isolated or degenerate: most other instances in

a small ball around it have good guarantees. On the one hand,

smoothed analysis gives a much stronger guarantee than average
case analysis, where one shows that the condition holds w.h.p. for

a random choice of parameters from some distribution. On the

other hand, it provides quantitative, robust analogs of genericity
results in algebraic settings, which are needed in most algorithmic

applications.

Considering the flavor of the algebraic non-degeneracy conditions,

the problem of smoothed analysis boils down to the following: given
a matrix M whose entries are functions (typically polynomials) of
some base variables, does randomly perturbing the variables result in
M having a non-negligible least singular value with high probability?

This question is non-trivial even in very specialized settings, as it

is a statement about anti-concentration — a topic that is less under-

stood in probability theory than concentration or large deviation

bounds. For example when the underlying variables form a matrix

𝑈 ∈ R𝑛×𝑚 , the structured matrix M = 𝑈 ⊙ 𝑈 =
(
𝑢𝑖 ⊗ 𝑢𝑖

)
𝑖∈[𝑚] ,

1

represents the Khatri-Rao product, and has been the subject of much

past work [4, 9, 11] that developed intricate arguments specialized

for this setting. Least singular value bounds ofM = 𝑈 ⊙𝑈 for ran-

domly perturbed𝑈 have lead to smoothed analysis guarantees for

several problems including tensor decomposition [9], recovering

assemblies of neurons [4], parameter estimation of latent variable

models like mixtures of Gaussians [13], hidden Markov models [11],

independent component analysis [15] and even learning shallow

neural networks [5]. Another approach is to use concentration

bounds to prove lower bounds on the least singular value [7, 22, 29?
] for analyzing random instances; these techniques based on con-

centration bounds cannot handle smoothed instances. We lack a

broader toolkit that allows us to analyze more general classes of ran-

dom matrices that arise in many other smoothed analysis settings

of interest.

Consider, for example the symmetric lift of thematrix𝑈 represented

by

𝑈 ⊛2 B ((�̃�𝑖 ⊗ �̃� 𝑗 + �̃� 𝑗 ⊗ �̃�𝑖 ) : 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑚),
where the columns (up to reshaping) give a basis for the space of

all the symmetric matrices that are supported on the subspace �̃� .

Here ⊛ denotes the symmetrized Kronecker product.

Question 1.1. For a linear operator Φ acting on the space of sym-

metric 𝑛 × 𝑛 matrices (e.g., a projection matrix), can we obtain an

inverse polynomial lower bound with high probability on the least

singular value of the matrix

M = Φ(𝑈 ⊛2) =
(
Φ(�̃�𝑖 ⊗ 𝑢 𝑗 + �̃� 𝑗 ⊗ �̃�𝑖 ) : 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑚

)
,

1
Here, ⊗ represents the standard tensor product or Kronecker product.

when𝑚 ≤ 𝑐𝑛 for a sufficiently small 𝑐 ∈ (0, 1)?

The new techniques developed in this paper, to our knowledge,

give the first inverse polynomial lower bound on the least singular

value ofM, and its higher order generalizations; see Theorem 1.4.

As it turns out, this already captures the Khatri-Rao product𝑈 ⊙𝑈
setting as a special case by setting𝑚 = 1 and Φ appropriately. One

interpretation of the statement is that𝑈 ⊛𝑈 acts like “truly random”

subspace in the lifted space Sym(R𝑛⊗R𝑛) with the same dimension.

With high probability, a random subspace of Sym(R𝑛 ⊗ R𝑛)2 with
dimension 𝑜 (𝑛2) will not contain any vector near the kernel of Φ.
The affirmative answer to the above question shows that the lifted

space that corresponds to column space of (𝑈 )⊛2 behaves similarly

and is far from the kernel of Φ! In other words, it is rotationally well-
spread; it is not too aligned with any specific subspace. Note that𝑈

only has about 𝑛𝑚 truly independent coordinates or “bits”, whereas

a random subspace of the same dimension has 𝑐 ·𝑛2𝑚2
independent

coordinates. Hence the lift U⊛2 of a smoothed subspace U acts

“pseudorandom” – it acts like a random subspace in the lifted space

with respect to all linear operators of reasonable rank.

Matrices of this flavor arise in open questions about the smoothed

analysis of various algebraic algorithms for problems like robust

certification of quantum entanglement in subspaces, certifying dis-

tance from varieties [19], and decomposition into sums of pow-

ers of polynomials [7, 12]. Specifically, rank-1 matrices (of unit

norm) correspond to separable or non-entangled states in bipartite

quantum systems. For a certain specific choice of Φ, the positive
resolution of Question 1.1 certifies that a smoothed subspace of

𝑛1 × 𝑛2 matrices of dimension 𝑐𝑛1𝑛2 (for some 𝑐 > 0) is far from

any rank-1 matrix of unit norm. Moreover, in the recent algebraic

algorithms of [7, 12], they consider generic or random subspaces

U1,U2, . . . ,U𝑡 ⊂ R𝑛 and they need to argue that the correspond-

ing 𝑑th order liftsU⊛𝑑
1
,U⊛𝑑

2
, . . . ,U⊛𝑑𝑡 are far from each other.

Our results give a novel and modular way to analyze such matrices.

Our contributions are two fold:

• We give new tools for proving least singular value lower bounds

via 𝜀-nets. This involves identifying a key property that is suffi-

cient for carrying forth net based arguments, and giving a new

tool for proving such a property.

• We consider matrices that have the structure of a linear operator

applied to higher-order lifts corresponding to the Kronecker

product, and give new techniques to reason about the least

singular value. This resolves open questions raised in [7, 12, 19].

1.1 Our Results
1.1.1 Hierarchical Nets. Our first set of results focus on 𝜀-net based
arguments for proving bounds for least singular values. Suppose

we have a random matrixM, the idea is to consider a fixed “test”

vector 𝛼 , prove that ∥M𝛼 ∥ is large enough with high probability,

and then take a union bound over “all possible vectors 𝛼”. As the set

of candidate 𝛼 is infinite, the idea is to take a fine enough net over

possible vectors 𝛼 . The challenge when dealing with structured

matrices (of the kind discussed above) is that for a single test vector

2Sym(R𝑛 ⊗ R𝑛 ) is the space of all symmetric 𝑛 × 𝑛 matrices.
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𝛼 , we do not obtain a sufficiently strong probability guarantee. This

is because the individual columns ofM may not have “sufficient

randomness”, and since we do not know how 𝛼 spreads its mass

across columns, the bound will be weak. Our main observation is

that in the matrices we consider for our application, as long as 𝛼 is

well spread, we can obtain a much stronger bound. We refer to this

as a “combination amplifies anticoncentration” (CAA) property of

M.

CAA Property (Informal Definition). We say thatM has the CAA

property if for every 𝑘 ≥ 1, for any test vector 𝛼 that has 𝑘 entries

of magnitude ≥ 𝛿 , we have that ∥M𝛼 ∥ ≥ Ω(𝛿), with probability

1 − exp(−𝜔 (𝑘)).

Formally, to capture the 𝜔 (𝑘) term, we have a parameter 𝛽 . See

Definition 4.1 for details. Our first result is that for any matrix with

this property, we have a bound on 𝜎min (M).

Informal Theorem 1.2. Suppose M is a random matrix with𝑚
columns and thatM satisfies the CAA property with parameter 𝛽 > 0.
Then with high probability (indeed, exponentially small probability
of failure), we have 𝜎min (M) > poly(1/𝑚). (See Theorem 4.2 for the
formal statement.)

The proof uses a novel 𝜀-net construction. Nets that use structural

properties of the test vector 𝛼 have been used in prior works in

the context of proving least singular value bounds, notably in the

celebrated work of Rudelson and Vershynin [24]. In proving our

result, the natural approach of constructing a hierarchy of nets

based on increasing 𝑘 (and using some threshold 𝛿) does not work.

Informally, this is because the error from ignoring terms that are

slightly smaller than 𝛿 can add up significantly, causing the argu-

ment to fail. We introduce a new hierarchical construction that

overcomes this problem.

The next question we consider is how to prove that the CAA prop-

erty holds in a particular context. This can be shown via a direct

argument whenM is simple, e.g., a random matrix with indepen-

dent entries. However, for matrices with more structured entries, it

can need a careful analysis. To handle this, we develop a new tool

for proving anticoncentration that we believe is of independent

interest.

1.1.2 Anti-concentration of a Vector of Polynomials. Consider 𝑃 (𝑥) :=
(𝑝1 (𝑥), 𝑝2 (𝑥), . . . , 𝑝𝑁 (𝑥)), where each 𝑝𝑖 is a polynomial of 𝑛 “base”

random variables. Suppose we wish to show anti-concentration

bounds for 𝑃 (𝑥), where 𝑥 is a perturbation of some 𝑥 (i.e., we wish

to bound the probability that 𝑃 (𝑥) is within a small ball of a point 𝑦

is small, for all 𝑦). One hope is to use a coordinate-wise bound (e.g.,

using known results like [30]) and take the product over 1, 2, . . . , 𝑁 .

It is easy to see that this is too good to be true: consider an example

where 𝑝𝑖 are all equal; here having 𝑁 coordinates is the same as

having just one. So we need a good metric for “how different” the

polynomials 𝑝𝑖 are for a typical 𝑥 . We capture this notion using

the Jacobian of the polynomial map 𝑃 . Recall that in this case, the

Jacobian 𝐽 (𝑥) is a matrix with one column per 𝑝𝑖 , containing the

vector of partial derivatives, ∇𝑝𝑖 (𝑥).

Jacobian rank property (Informal Definition). We say that 𝑃 (𝑥) has
the Jacobian rank property if for every 𝑥 , at a slightly perturbed

point 𝑥 , 𝐽 (𝑥) has at least 𝑘 singular values that are large enough
(where 𝑘 is a parameter).

We refer to Definition B.1 for the formal statement. Our result here

is that this property implies anticoncentration:

Informal Theorem 1.3. Suppose 𝑃 (𝑥) defined as above satisfies
the Jacobian rank property with parameter 𝑘 . Then for a perturbation
of any point 𝑥 , we have that ∀𝑦, P[∥𝑃 (𝑥) − 𝑦∥ < 𝜀] < exp(−Ω(𝑘)).
(Here, 𝜀 is a quantity that depends on the dimensions, 𝑘 , the perturba-
tion, and the singular value guarantee; see Theorem 4.7 for the formal
statement.)

Intuitively, the Jacobian having several large singular values must

result in anticoncentration (because 𝑃 (𝑥) locally behaves linearly).

However, the challenging aspect is that the Jacobian need not al-
ways have many large singular values. Our assumption (Jacobian

rank property) is itself made for a perturbed vector, i.e., we assume

that 𝐽 (𝑥) has many high singular values with high probability. Fur-

ther, the magnitude of these singular values will depend on the

perturbation: if a “bad” 𝑥 was perturbed by 𝜌 , 𝐽 (𝑥) will have most

of the large singular values being ≈ 𝜌 . Dealing with this issue

turns out to be the main challenge in proving the theorem (see

Theorem 4.7 for a formal statement).

As an application of the Jacobian rank method, we re-prove the

main result of [9] and [4]. They consider randommatricesM where

the 𝑖th column is �̃�𝑖 ⊗ 𝑣𝑖 , and �̃�𝑖 , 𝑣𝑖 are perturbed vectors in R𝑛 . We

show that this M satisfies the CAA property, and thus our first

result (above) implies a condition number lower bound. In order to

prove the CAA property, we consider a combination of the columns∑
𝑖 𝛼𝑖 (�̃�𝑖⊗𝑣𝑖 ) and prove that if 𝛼 has𝑘 entries ≥ 𝛿 , then the Jacobian

has 𝑛𝑘/2 large singular values. Using our second result, we obtain

a strong anticoncentration bound, thus completing the proof. This

technique also lets us tackle Question 1.1 described above, but in

what follows, we describe a different technique that also generalizes

to higher orders.

1.1.3 Structured Matrices from Kronecker Products. Next, we con-
sider a general class of structured matrices that are obtained by

taking the symmetrized Kronecker product of some 𝜌-perturbation

�̃� of an underlying matrix𝑈 and applying a linear operator Φ. Here,
�̃� is a 𝜌-perturbation of𝑈 means �̃� = 𝑈 +N(0, 𝜌2). In other words,

the matrix of interest isM = Φ𝑈 ⊛𝑑 , where 𝑑 is a constant. For such

a matrix, we can ask the question: are there conditions on Φ under

which we can prove that 𝜎min (M) is large, with high probability

over the perturbation? We provide an affirmative answer to this

question in terms of the rank of Φ.

This question captures a variety of settings studied previously. For

example, [11] studies matrices M whose columns are tensor prod-

ucts of some underlying vectors (i.e., the columns have the form

𝑢𝑖1 ⊗ 𝑢𝑖2 ⊗ · · · ⊗ 𝑢𝑖𝑑 ). This turns out to be a special case of our

setting above. Likewise, in the work of [7], one of the matrices

they consider is an M formed by concatenating the Kronecker

products of a collection of underlying matrices, and the analysis of

their algorithm relies on 𝜎min (M) being non-negligible. This also
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falls into our setting by choosing Φ appropriately (as we show in

Corollary 5.3). Finally, as we discuss in our applications, the setting

M = Φ𝑈 ⊛𝑑 also directly appears in the work of [19].

The following is an informal statement of our result. Sym𝑑 (R𝑛)
will refer to a symmetrization of (R𝑛)⊗𝑑 .3 Also, as before, 𝜎min

corresponds to right singular vectors.

Informal Theorem 1.4. Suppose Φ is a matrix of rank 𝛿
(𝑛+𝑑−1

𝑑

)
for some constant 𝛿 > 0, and let 𝑈 be any 𝑛 ×𝑚 matrix. Let𝑈 be a
𝜌-perturbation of𝑈 . Then as long as𝑚 ≤ 𝑐𝑛 for some constant 𝑐 , we
have ≥ 1 − exp(−Ω(𝑛)),

𝜎min (Φ𝑈 ⊛𝑑 ) ≥ poly

(
𝜌,

1

𝑛

)
.

(See Theorem 5.1 for a formal statement.)

Note that the above Theorem 1.4 with 𝑑 = 2 answers Question 1.1

affirmatively. It also proves a similar statement about how the col-

umn space of a 𝑑th order lift 𝑈 ⊛𝑑 behaves like a random subspace

of the lifted space of the same dimension with respect to linear op-

erators in the lifted space of reasonable rank, even though we have

only 𝑑𝑛𝑚 random “bits” as opposed to Ω𝑑 ((𝑚𝑛)𝑑 ). As we describe
in Section 2, the proof relies on first moving to non-symmetric prod-

ucts via a new decoupling argument. In the case of non-symmetric

products, we end up having to analyze the least singular value

of a matrix of the form Φ(𝑈 (1) ⊗ 𝑈 (2) ⊗ · · · ⊗ 𝑈 (𝑑 ) ). This can
be interpreted as a “modal contraction” (or dimension reduction

of the mode) defined by {𝑈 (𝑖 ) } applied to the tensor Φ. We then

show how to analyze such smoothed modal contractions, which ends

up being one of our technical contributions (see Section 2.3 and

Theorem 5.2).

1.1.4 Applications.

Certifying distance from variety and quantum entanglement. Our
first application is to the problem of certifying that a variety is “far”

from a generic linear subspace. As a simple motivation, suppose

we have a linear subspace X of dimension 𝛿𝑛 in R𝑛 (assume 𝛿 <

1/2). Then for a randomly 𝜌-perturbed subspace Ũ of dimension

< 𝑛/2, we can show that the two spaces have no overlap in a

strong sense: every unit vector 𝑢 ∈ X is at a distance Ω(𝜌) from
Ũ. It is natural to ask if a similar statement holds when X is an

algebraic variety (as opposed to a subspace). This problem also

has applications to quantum information (see [19] and references

therein). Furthermore, we can ask if there is an efficient algorithm

that can certify that every unit vector in X is far from Ũ.

We answer both these questions in the affirmative.

Informal Theorem 1.5. Suppose X ⊂ R𝑛 is an irreducible variety
cut out by 𝛿

(𝑛+𝑑−1
𝑑

)
homogeneous degree 𝑑 polynomials. There exists

a 𝑐 > 0 such that for any 𝜌-perturbed subspace Ũ of dimension at
most 𝑐𝑛, with probability 1 − exp(−Ω(𝑛)), every unit vector in X

3
The latter can be viewed as having a coordinate for all “ordered” monomials of degree

𝑑 in 𝑛 variables (e.g., 𝑥𝑖𝑥 𝑗 and 𝑥 𝑗𝑥𝑖 correspond to different coordinates), while the

former collects the terms with the same product. See Section 3 for a formal description.

has distance ≥ poly

(
𝜌, 1𝑛

)
to Ũ. Further, this can be certified by an

efficient algorithm. (See Theorem D.1 for the formal statement.)

The recent work of [19] gave an algorithm that we also use, but our

new least singular value bounds imply the quantitative distance

lower bound stated above. Applying this theorem with the variety

of rank-1 matrices gives the following direct corollary.

Corollary 1.6. There is a polynomial time algorithm that given a
random 𝜌-perturbed subspace Ũ of 𝑛1 × 𝑛2 matrices of dimension
𝑚 ≤ 𝑐𝑛1𝑛2 (for some universal constant 𝑐 > 0) certifies w.h.p. that Ũ
is at least poly(𝜌, 1/𝑛) far from every rank-1 matrix of unit norm.

The above theorem also has a direct implication to robustly certify-

ing entanglement of different kinds, which we describe in Section D.

Decomposing sums of powers of polynomials. Our second application
is to the problem of “decomposing power sums” of polynomials, a

question that has applications to learning mixtures of distributions.

In the simplest setting, [12] and [7] consider the following problem:

given a polynomial 𝑝 (x) that can be expressed as

𝑝 (x) =
∑︁
𝑡 ∈[𝑚]

𝑎𝑡 (x)3 + 𝑒 (x)

where 𝑎𝑡 are quadratic polynomials and 𝑒 (x) is a small enough error

term, the goal is to recover {𝑎𝑡 (x)}𝑡 ∈[𝑚] .
4
The work of [7] gave an

algorithm for this problem, but their analysis relies on certain non-
degeneracy conditions, which can be formulated as a lower bound

on the least singular value of appropriate matrices. They prove that

these conditions hold if the instances (i.e., the polynomials 𝑎𝑡 ) are

random, using the machinery of graph matrices [1]. However, the

question of obtaining a smoothed analysis guarantee is left open. As

discussed earlier, a smoothed analysis guarantee is much stronger

than a guarantee for random instances, as it shows that even in the

neighborhood of hard instances, most instances are easy.

Their analysis requires least singular value bounds for various ma-

trices that arise from higher order lifts and polynomials of some un-

derlying random variables. For example, they require least singular

value bounds on matrices of the form Φ(�̃� ⊛3), for a specific sym-

metrization operator Φ that acts on the lifted space. Another type of

matrix that they analyze are block Kronecker products, of the form
𝑉 = [�̃� ⊛2

1
. . . �̃� ⊛2𝑚 ] that arise from different partial derivatives.

5

These kinds of matrices are ideal candidates for our techniques.

Informal Theorem 1.7. For the matricesM arising in the analysis
of [7], a 𝜌-perturbation of the parameters of 𝑎𝑡 results in 𝜎min (M) ≥
poly(𝜌, 1/𝑛), with probability 1 − exp(−poly(𝑚,𝑛)). (This corre-
sponds the formal statements of propositions E.1, E.2, and E.3.)

These least singular bounds allow us to conclude that the algorithm

of [7] indeed has a smoothed analysis guarantee. In Section E, we

outline the algorithm of [7], identify the different non-degeneracy

conditions required and show that each of these conditions holds

for smoothed/perturbed polynomials 𝑎𝑡 . Interestingly, we can avoid

4
This corresponds to the setting 𝐾 = 2, 𝐷 = 1 in their framework. We focus only on

this setting, as it turns out to be representative of their techniques.

5
The actual matrix is slightly different, and is described in detail in Section E.
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the technically heavy machinery of graph matrices, while obtain-

ing stronger (smoothed) results. We hope our new techniques can

also help obtain smoothed analysis guarantees for other algebraic

methods like the framework of [12].

2 PROOF OVERVIEW AND TECHNIQUES
2.1 Improved Net Analyses
𝜀-Nets and limitations. The classic approach to proving least singu-

lar value bounds is an 𝜀-net argument. The argument proceeds by

trying to prove that ∥M𝛼 ∥ is large for all 𝛼 in the unit sphere. It

does so by constructing a fine “net” over points in the sphere with

the properties that (a) the net has a small number of points, and

hence a union bound can establish the desired bound for points

in the net, and (b) for every other point 𝛼 in the sphere, there is a

point 𝛼 ′ in the net that is close enough, and hence the bound for

𝛼 ′ “translates” to a bound for 𝛼 . However, in settings where the

columns 𝑋𝑖 ofM have “limited randomness”, this approach cannot

be applied in many parameter regimes of interest. The simplest

example is one where each 𝑋𝑖 is of the form �̃�𝑖 ⊗ �̃�𝑖 , where �̃�𝑖 ∈ R𝑛
and we have around𝑚 = 𝑛2/4 such vectors. In this case, (a) above

causes a problem: the size of a net for unit vectors in a sphere in

R𝑚 is exp(𝑚) = exp(𝑛2/4). This is much too big for applying a

union bound, since each column only has “𝑛 bits” of randomness,

so the failure probability we can obtain for a general 𝛼 is exp(−𝑛).
For this specific example, the works [4, 9] overcome this limitation

by considering more ad-hoc methods for showing least singular

value bounds, not based on 𝜀-nets.

Main idea from Section 4.1. As described above, the limited random-

ness in each column 𝑋𝑖 limits the probability with which we can

show that P[∥M𝛼 ∥] is large. However, we observe that in many

settings, as long as we consider an 𝛼 that is spread out, we can show

that P[∥M𝛼 ∥] is large with a significantly better probability. Infor-

mally, in this case, the randomness across many different columns

gets “accumulated”, thus amplifying the resulting bound. We re-

fer to this phenomenon as combination amplifies anticoncentration
(CAA) (described informally in Section 1.1; see Definition 4.1). Our

first theorem states that the CAA property automatically implies a

lower bound on 𝜎min (M) with high probability.

To outline the proof of the theorem, let us consider some unit vector

𝛼 ∈ R𝑚 . If 𝛼 has say𝑚/2 “large enough” entries, then the CAA

property implies that ∥M𝛼 ∥ is non-negligible with probability

1 − exp(−𝑚) (roughly), and so we can take a union bound over

a (standard) 𝜀-net, and we would be done. However, suppose 𝛼

had only 𝑘 entries that are large enough (defined as > 𝛿 for some

threshold), and 𝑘 ≪𝑚. In this case, the CAA property implies that

∥M𝛼 ∥ ≥ 𝑐𝛿 with probability roughly 1 − exp(−𝑘). While this is

large enough to allow a union bound over just the large entries of

𝛼 (placing a zero in the other entries), the problem is that there can

be many entries in 𝛼 that are just slightly smaller than 𝛿 . In this

case, having ∥M𝛼≥𝛿 ∥ ≥ 𝑐𝛿 (where 𝛼≥𝛿 is the vector 𝛼 restricted

to the entries ≥ 𝛿 in magnitude, and zeros everywhere else) does

not let us conclude that ∥M𝛼 ∥ > 0, unless 𝑐 is very large. Since we

cannot ensure that 𝑐 is large, we need a different argument.

The idea will be to use the fact that our definition of the CAA comes

with a slack parameter 𝛽 . In particular, for 𝛼 as above with 𝑘 values

of magnitude ≥ 𝛿 , it allows us to take a union bound over 𝑘 ·𝑚𝛽
parameters. Thus, if we knew that there are at most 𝑘 ·𝑚𝛽 entries

that are “slightly smaller” (by a factor roughly 𝜃 ) than 𝛿 , we can

include them in the 𝜀-net. Defining 𝜃 appropriately, we can ensure

that the problem described above (where the slightly smaller entries

cancel out theM𝛼≥𝛿 ) does not occur. The problem now is when

𝛼 has > 𝑘 ·𝑚𝛽 entries of magnitude between 𝜃𝛿 and 𝛿 . While this

is indeed a problem for this value of 𝛿 , it turns out that we can try

to work with 𝜃𝛿 instead. Now the problem can recur, but it cannot

recur more than (1/𝛽) times (because each time, 𝑘 grows by an

𝑚𝛽 factor). This allows to define a hierarchical net, which helps us

identify the threshold 𝛿 for which the ratio of the number of entries

≥ 𝜃𝛿 and ≥ 𝛿 is smaller than𝑚𝛽 .

By carefully bounding the sizes of all the nets and setting 𝜃 appro-

priately, Theorem 4.2 follows.

2.2 Jacobian Based Anticoncentration
As described in Section 1.1, proving smoothed analysis bounds

often requires dealing with a vector of polynomials

𝑃 (𝑥) = (𝑝1 (𝑥), . . . , 𝑝𝑁 (𝑥))

in some underlying variables 𝑥 . The goal is to show that for every 𝑥 ,

evaluating 𝑃 at a 𝜌-perturbed point 𝑥 gives a vector that is not too

small in magnitude. (A slight generalization is to show that 𝑃 (𝑥) is
not too close to any fixed 𝑦.)

We first observe that such a statement is not hard to prove if we

know that the Jacobian 𝐽 (𝑥) of 𝑃 (𝑥) has many large singular values

at every 𝑥 , and if the perturbation 𝜌 is small enough. This is because

around the given point 𝑥 , we can consider the linear approximation

of 𝑃 (𝑥) given by the Jacobian. Now as long as the perturbation

has a high enough projection onto the span of the corresponding

singular vectors of 𝐽 (𝑥), 𝑃 (𝑥) can be shown to have desired anti-

concentration properties (by using the standard anticoncentration

result for Gaussians). Finally, if 𝐽 (𝑥) has 𝑘 large singular values, a

random 𝜌-perturbation will have a large enough projection to the

span of the singular vectors with probability 1 − exp(−𝑘).

Now, in the applications we are interested in, the polynomials 𝑃

tend to have the Jacobian property above for “typical” points 𝑥 , but

not all 𝑥 . Our main result here is to show that this property suffices.

Specifically, suppose we know that for every 𝑥 , the Jacobian at a 𝜌

perturbed point has 𝑘 singular values of magnitude ≥ 𝑐𝜌 with high

probability. Then, in order to show anticoncentration, we view the

𝜌 perturbation of 𝑥 as occurring in two independent steps: first

perturb by 𝜌
√
1 − 𝑧2 for some parameter 𝑧, and then perturb by

𝜌𝑧. The key observation is that for Gaussian perturbations, this is

identical to a 𝜌 perturbation!

This gives an approach for proving anticoncentration. We use the

fact that the first perturbation yields a point with sufficiently many

large Jacobian singular values with high probability, and combine

this with our earlier result (discussed above) to show that if 𝑧 is

small enough, the linear approximation can indeed be used for the
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second perturbation, and this yields the desired anticoncentration

bound.

Applications. The simplest application for our framework is the set-

ting whereM has columns being �̃�𝑖 ⊗ 𝑣𝑖 , for some 𝜌-perturbations

of underlying vectors 𝑢𝑖 , 𝑣𝑖 . (This setting was studied in [4, 9] and

already had applications to parameter recovery in statistical mod-

els.) Here, we can show thatM has the CAA property. To show this,

we consider some combination

∑
𝑖 𝛼𝑖 (�̃�𝑖 ⊗ 𝑣𝑖 ) with 𝑘 “large” coeffi-

cients in 𝛼 , and show that in this case, the Jacobian property holds.

Specifically, we show that the Jacobian has Ω(𝑘𝑛) large singular
values. This establishes the CAA property, which in turn implies

a lower bound on 𝜎min (M). This gives an alternative proof of the

results of the works above.

2.3 Structured Matrices from Kronecker
Products and Higher-order lifts

Our second set of techniques allow us to handle structured matrices

that arise from the action of a linear operator on Kronecker products,

as described in Question 1.1. For simplicity let us focus on the

setting when 𝑑 = 2, and let Φ : Sym(R𝑛 ⊗ R𝑛) → R𝑘 be an

(orthogonal) projection matrix of rank 𝑅 ≥ 0.01𝑛2 acting on the

space of symmetric matrices Sym(R𝑛 ⊗ R𝑛) (in general Φ can also

be any linear operator of large rank). Let𝑚 = 𝑜 (𝑛) and𝑈 ∈ R𝑛×𝑚
be a small random 𝜌-perturbation of arbitrary matrix 𝑈 ∈ R𝑛×𝑚 .

The columns of the matrix𝑈 ⊛2 are linearly independent with high

probability, and span the symmetric lift of the column space of 𝑈 .

An arbitrary subspace of Sym(R𝑛 ⊗R𝑛) of the same dimension may

intersect non-trivially, or lie close to the kernel of Φ. Theorem 1.4

shows that the column space of𝑈 ⊛2 for a smoothed𝑈 is in fact far

from the kernel of Φ with high probability. Note that 𝑈 only has

about𝑛𝑚 truly independent coordinates or “bits”, whereas a random

subspace (matrix) of the same dimension has 𝑐 · 𝑛2𝑚2
independent

coordinates.

Challenge with existing approaches. This setting captures many

kinds of randommatrices that have been studied earlier including [4,

9, 11]. For example, [11] studies the setting when a fixed polynomial

map 𝑓 : R𝑛 → R𝑘 applied to a randomly perturbed vector �̃�𝑖 to

produce the 𝑖th column 𝑓 (�̃�𝑖 ). It turns out to be a special case

of our setting above when 𝑚 = 1. These works use the leave-
one-out approach to lower bound the least singular value, where

they establish that every column has a non-negligible component

orthogonal to the span of the rest of the columns (see Lemma 3.1).

However this approach crucially relies on the columns bringing in

independent randomness.
6
This does not hold in our setting, since

every column share randomness with Ω(𝑚) other columns.

In the recent algebraic algorithms of [7, 12] for decomposing sum

of powers of polynomials, the analysis of the algorithm involves

analyzing the least singular value of different random matrices.

One such matrix M is formed by concatenating the Kronecker

products of a collection of underlying matrices. This allows us to

reason about that the non-overlap or distance between the lifts

of a collection of subspaces. The work of [7] analyzed the fully

6
The work of [11] also handles some specific settings with a small overlap across

columns, but these specialized ideas do not extend more generally to our setting.

Figure 1:Thefigure shows the setting of Theorem2.1with𝑑 = 2. Left:
The linear operator Φ : R𝑛×𝑛 → R𝑅 interpreted as a tensor consisting
of a 𝑛 × 𝑛 array of 𝑅-dimensional vectors. There are smoothed or
random contractions applied using matrices 𝑈 ,𝑉 ∈ R𝑛×𝑚 . Right:
The operator Φ(𝑈 ⊗ 𝑉 ) : R𝑚×𝑚 → R𝑅 interpreted as an𝑚2 array of
𝑅-dimensional vectors. Theorem 2.1 shows that under the conditions
of the theorem, with high probability the robust rank is𝑚2.

random setting and proves least singular value boundswith intricate

arguments involving graph matrices, matrix concentration, and

other ideas. Specifically, like in [29], they show that E[M] has good
least singular value, and then prove deviation bounds on the largest

singular value ofM−E[M] to get a bound of 𝜎min (E[M])− ∥M−
E[M]∥. But this approach does not extend to the smoothed setting,

since the underlying arbitrary matrix𝑈 makes it challenging to get

good bounds for ∥M − E[M]∥.

For the smoothed case, when 𝑑 = 2, it turns out that we can use

ideas similar to those described in Sections 2.1 and 2.2 to show

Theorem 1.4. However, the approach runs into technical issues for

larger 𝑑 . Thus, we develop an alternate technique to analyze higher-

order lifts that proves Theorem 1.4 for all constant 𝑑 . In order to

prove Theorem 1.4 we first move to a decoupled setting where we

are analyzing the action of a linear operator on decoupled products

of the form

Φ(𝑈 ⊗ 𝑉 ),

where 𝑉 has a random component that is independent of 𝑈 . This

new decoupling step leverages symmetry and the Taylor expan-

sion and carefully groups together terms in a way that decouples

the randomness. The main technical statement we prove is the

following non-symmetric version of Theorem 1.4 which analyzes a

linear operator acting on a Kronecker product of different smoothed

matrices.

Informal Theorem 2.1 (Non-symmetric version for 𝑑 = 2 and

modal contractions). Suppose Φ ∈ R𝑅×𝑛𝑑 is a matrix with at least
Ω(𝑛2) singular values larger than 1, and let 𝑈 ,𝑉 be random 𝜌-
perturbations of arbitrary matrices 𝑈 ,𝑉 . Then if 𝑚 ≤ 𝑐𝑛 for an
appropriate small constant 𝑐 > 0, we have with probability ≥ 1 −
exp(−Ω(𝑛)) that

𝜎min

(
Φ(𝑈 ⊗ 𝑉 )

)
≥ poly

(
𝜌,

1

𝑛

)
.

(See Theorem 5.2 for the formal statement for general 𝑑 .)
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Smoothed modal contractions. While Φ is specified as a linear op-

erator or a matrix of dimension 𝑅 × 𝑛2 in Theorem 2.1, one can

alternately view Φ as a order-3 tensor of dimensions 𝑅 × 𝑛 × 𝑛
as shown in Figure 1. Theorem 2.1 then gives a lower bound for

the multilinear rank
7
(or its robust analog) under smoothed modal

contractions (dimension reduction) along the modes of dimension

𝑛 each. The proof of this theorem is by induction on the order 𝑑 . We

perform each modal contraction one at a time. As shown in Figure 2,

we first do modal contraction by 𝑉 to obtain a 𝑅 × 𝑛 ×𝑚 tensor𝑊

and then by𝑈 to form the final 𝑅 ×𝑚 ×𝑚 tensor. We need to argue

about the (robust) ranks of the matrix slices (we also call them

blocks) and tensors obtained in intermediate steps. For any matrix

𝑀 (potentially a matrix slice of the tensor Φ) of large (robust) rank
𝑘 > 1.1𝑚, a smoothed contraction 𝑀�̃� has full rank𝑚 (i.e., non-

negligible least singular value) with probability 1 − exp(−Ω(𝑘)).
To argue that the final tensor (when flattened) has full rank𝑚2

, we

need to argue that for the tensor in the intermediate step𝑊 , each of

the𝑚 slices (along the contracted mode) has rank at least Ω(𝑛). The
original rank of Φ was large, so we know that a constant fraction

of the slices Φ1, . . . ,Φ𝑛 must have rank Ω(𝑛). But this alone may

not be enough since many of the slices can be identical, in which

case the𝑚 slices are not sufficiently different from each other.

We can use the large rank of Φ to argue that a constant fraction of

the matrix slices should have large “marginal rank” i.e., they have

large rank even if we project out the column spaces of the slices

that were chosen before it. While this strategy may work in the

non-robust setting, this incurs an exponential blowup in the least

singular value. Instead we use the following randomized strategy of
finding a collection of blocks or slices 𝑆1 ⊂ [𝑛], each of which has

a large “relative rank”, even after we project out the column spaces

of all the other blocks in 𝑆1 (we show these statements in a robust

sense, formalized using appropriate least singular values).

Finding many blocks with large relative rank. We note that while

the idea is quite intuitive, the proof of the corresponding claim

(Lemma 5.4) is non-trivial because we require that in any selected

block, there must be many vectors with a large component orthog-

onal to the entire span of the other selected blocks. As a simple

example, consider setting 𝑛2 = 2𝑡 and

Φ1 = {𝑒1, 𝑒2, . . . , 𝑒𝑡 , 𝜀𝑒𝑡+1, 𝜀𝑒𝑡+2, . . . , 𝜀𝑒2𝑡 },
and Φ2 = {𝜀𝑒1, 𝜀𝑒2, . . . , 𝜀𝑒𝑡 , 𝑒𝑡+1, 𝑒𝑡+2, . . . , 𝑒2𝑡 }.

In this case, even if 𝜀 is tiny, we cannot choose both the blocks,

because the span of the vectors in Φ2 contains all the vectors in Φ1.

The proof will proceed by first identifying a set of roughly 𝑅 =

Ω(𝑛2) vectors (spread across the blocks) that form a well condi-

tioned matrix, followed by randomly restricting to a subset of the

blocks. We start with the following claim, which gives us the first

step.

Claim 2.2 (Same as Lemma C.2). Suppose 𝐴 is an 𝑚 × 𝑛 matrix
such that 𝜎𝑘 (𝐴) ≥ 𝜃 . Then there exists a submatrix 𝐴𝑆 with |𝑆 | = 𝑘
columns, such that 𝜎𝑘 (𝐴𝑆 ) ≥ 𝜃/

√
𝑛𝑘 .

7
The multilinear rank(s) of a tensor is the rank of the matrix after flattening all but

one mode of the tensor.

The lemma is a robust version of the simple statement that if

𝜎𝑘 (𝐴) > 0, then there exist 𝑘 linearly independent columns. The

proof of the claim is elegant and uses the choice of a so-called

Auerbach basis or a well-conditioned basis for the column span.

The outline of the main argument is as follows:

(1) First find a submatrix 𝑀 of 𝑅 = 𝛿𝑛2 columns of Φ such that

𝜎𝑅 (𝑀) is large

(2) Randomly sample a subset 𝑇 ⊆ [𝑛] of the blocks.

(3) Discard any block 𝑗 ∈ 𝑇 that has fewer than 𝛿𝑛/6 vectors

with a non-negligible component orthogonal to the span of

∪𝑟 ∈ (𝑇 \{ 𝑗 })Φ𝑟 ; argue that there are Ω(𝛿𝑛) blocks remaining.

We remark that the above idea of a random restriction to obtain

many blocks with large relative rank (in a robust sense) seems of

independent interest and also comes in handy in the application to

power sum decompositions (Claim E.5).

Figure 2: Left: The setting of 𝑑 = 2 with linear operator
Φ : R𝑛×𝑛 → R𝑅 having slices Φ1, . . . ,Φ𝑛 ∈ R𝑅×𝑛 . The modal
contractions 𝑈 ,𝑉 ∈ R𝑛×𝑚 have not yet been applied. Right:
After modal contraction along𝑉 ∈ R𝑛×𝑚 , we get𝑊 ∈ R𝑅×𝑛×𝑚
with slices𝑊1, . . . ,𝑊𝑛 .𝑊𝑆1 ∈ R𝑅×𝑆1×𝑚 represents the slices
obtained from the “good” blocks 𝑆1 ⊂ [𝑛], and 𝑊[𝑛]\𝑆1 ∈
R𝑅×([𝑛]\𝑆1 )×𝑚 represents the remaining slices. The random
modal contraction 𝑈 is also split into 𝑈𝑆1 ∈ R𝑆1×𝑚,𝑈 [𝑛]\𝑆1 ∈
R[𝑛]\𝑆1×𝑚 .

Finishing the inductive argument. As shown in Figure 2, after modal

contraction along �̃� ∈ R𝑛×𝑚 , we get𝑊 ∈ R𝑅×𝑛×𝑚 with slices

𝑊1, . . . ,𝑊𝑛 .

Now we would like to argue that when we perform a smoothed

contraction with 𝑈 , the contracted slices have large rank, while

simultaneously preserving the relative rank across the slices. Let

𝑊𝑆1 ∈ R𝑅×𝑆1×𝑚 represent the subtensor corresponding to the slices

obtained from the “good” blocks 𝑆1 ⊂ [𝑛] (which have large relative
rank), and let𝑊[𝑛]\𝑆1 ∈ R𝑅×([𝑛]\𝑆1 )×𝑚

represent the remaining

slices. Also let𝑊 ( 𝑗 ) ∈ R𝑅×𝑛 denote the matrix slices along the

alternate mode for each 𝑗 ∈ [𝑚]. We can show that the randomly

contracted matrices𝑊
( 𝑗 )
𝑆1

have large relative rank with respect

to each other. The random modal contraction 𝑈 can also now be
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split into𝑈𝑆1 ∈ R𝑆1×𝑚,𝑈 [𝑛]\𝑆1 ∈ R[𝑛]\𝑆1×𝑚 . The final matrix slice

obtained for each 𝑗 ∈ [𝑚𝑑−1] can be written as

𝑀 ( 𝑗 ) =𝑊 ( 𝑗 )
𝑆1

𝑈𝑆1 +𝑊
( 𝑗 )
[𝑛]\𝑆1𝑈 [𝑛]\𝑆1 ,

where the randomness in the two summands is independent. Argu-

ing that the high relative rank across the slices is preserved involves

some work, and this is achieved in Lemma 5.5. The lemma proves

that with high probability, every test unit vector 𝛼 ∈ R𝑚 ·𝑚
has

non-negligible value of ∥𝑀𝛼 ∥2. A standard argument would con-

sider a net over all potential unit vectors 𝛼 ∈ R𝑚 ·𝑚
. However this

approach fails here, since we cannot get high enough concentration

(of the form 𝑒−Ω (𝑚2 )
) that is required for this argument. Instead,

we argue that if there were such a test vector 𝛼 ∈ R𝑚 ·𝑚
, there exists

a block 𝑗∗ ∈ [𝑚] where we get a highly unlikely event. This allows

us to conclude the inductive proof that establishes Theorem 2.1.

3 PRELIMINARIES
We now introduce our basic definitions and notation. For a matrix

𝑈 ∈ R𝑛×𝑚 , let ∥𝑈 ∥ and ∥𝑈 ∥𝐹 denote the operator and Frobenius

norms of 𝑈 , respectively. Central to the paper are 𝜌-smoothed

matrices. In particular, given a matrix𝑈 ∈ R𝑛×𝑚 , we let �̃� = 𝑈 + 𝐸
where 𝐸 ∈ N (0, 𝜌2). We commonly call �̃� a 𝜌-smoothing of 𝑈 or

a 𝜌-perturbation of 𝑈 . Similar notation is used for vector inputs

𝑥 = (𝑥1, . . . , 𝑥𝑛) to a polynomial 𝑝 : R𝑛 → R𝑚 . I.e., 𝑥 = 𝑥 +𝜂 where
𝜂 ∈ N (0, 𝜌2). Thus, for example, 𝑝 (𝑥) is the evaluation of 𝑝 on a

𝜌-smoothed 𝑥 .

Products. We also frequently use the Kronecker product, denoted ⊗,
and the Khatri-Rao product, denoted ⊙. Given matrices, 𝐴 ∈ R𝑛×𝑚
and 𝐵 ∈ R𝑘×ℓ , the Kronecker product 𝐴 ⊗ 𝐵 is the block matrix

𝐴 ⊗ 𝐵 =


𝑎11𝐵 . . . 𝑎1𝑚1

𝐵

.

.

.
. . .

.

.

.

𝑎𝑛11𝐵 . . . 𝑎𝑛1𝑚1
𝐵

 ∈ 𝑅𝑛𝑘×𝑚ℓ .

We let 𝐴⊗𝑑 ∈ 𝑅𝑛𝑑×𝑚𝑑
denote the Kroncker product of a total of 𝑑

copies of 𝐴. In the case that𝑚 = ℓ , the Khatri-Rao product 𝐴 ⊙ 𝐵 is

defined by

𝐴 ⊙ 𝐵 =


↑ ↑

𝑎1 ⊗ 𝑏1 . . . 𝑎𝑚 ⊗ 𝑏𝑚
↓ ↓

 ∈ R𝑛𝑘×𝑚 .

Here 𝑎 𝑗 and 𝑏 𝑗 denote the 𝑗 th column of 𝐴 and 𝐵, respectively, and

𝑎 𝑗 ⊗ 𝑏 𝑗 is the Kronecker product (or simply the tensor product) of

these columns.

For vector spacesU,V , the tensor product spaceU ⊗V = {𝑢 ⊗ 𝑣 :
𝑢 ∈ U, 𝑣 ∈ V}. When U = V , we also call U⊗2 = U ⊗ U a lift

of the space U (of degree/order 2). This can also be generalized

to 𝑑-wise products and lifts. When U = R𝑛 , the space (R𝑛)⊗𝑑
corresponds to the space of all 𝑑-th order tensors of dimensions

𝑛 × 𝑛 · · · × 𝑛. This is isomorphic to the space R𝑛
𝑑
; each tensor can

be flattened to form a vector in 𝑛𝑑 dimensions i.e., (R𝑛)⊗𝑑 � R𝑛𝑑 .

Symmetrized products. We are often concerned with symmetrized

versions of matrix products. To handle these, we introduce a (par-

tially) symmetrized Kronecker product ⊛ which is defined for tu-

ples of matrices (𝑈 (1) , . . . ,𝑈 (𝑑 ) ) where𝑈 ( 𝑗 ) ∈ R𝑛 𝑗×𝑚
. We define

𝑈 (1) ⊛ 𝑈 (2) ⊛ . . . ⊛ 𝑈 (𝑑 ) ∈ RΠ𝑑
𝑖=1
𝑛 𝑗×(𝑚+𝑑−1

𝑑 )
to be the matrix with

columns indexed by tuples (𝑖1, 𝑖2, . . . , 𝑖𝑑 ) with 1 ≤ 𝑖1 ≤ 𝑖2 ≤ · · · ≤
𝑖𝑑 ≤ 𝑚 where the column corresponding to (𝑖1, 𝑖2, . . . , 𝑖𝑑 ) is

1

|𝑆𝑑 |
∑︁
𝜋∈𝑆𝑑

𝑢
(1)
𝑖𝜋 (1)

⊗ 𝑢 (2)
𝑖𝜋 (2)

⊗ · · · ⊗ 𝑢 (𝑑 )
𝑖𝜋 (𝑑 )

.

Here 𝑆𝑑 denotes the symmetric group on [𝑑] and 𝑢 ( 𝑗 )
𝑖𝜋 ( 𝑗 )

denotes the

𝑖𝜋 ( 𝑗 ) th column of 𝑈 ( 𝑗 )
. For example, for matrices 𝑈 ,𝑉 ∈ R𝑛×𝑚 ,

the column of𝑈 ⊛ 𝑉 corresponding to a tuple (𝑖, 𝑗) with 𝑖 ≤ 𝑗 is

1

2

(𝑢𝑖 ⊗ 𝑣 𝑗 + 𝑢 𝑗 ⊗ 𝑣 𝑗 ) .

In the case that 𝑖 = 𝑗 , this reduces to𝑢𝑖 ⊗𝑣𝑖 . For a matrix𝑈 ∈ R𝑛×𝑚 ,

we let 𝑈 ⊛𝑑 ∈ R𝑛𝑑×(
𝑚+𝑑−1

𝑑 )
denote the ⊛ product of a total of 𝑑

copies of𝑈 . The product ⊛ can be viewed as a partially symmetrized

version of the Kronecker product since all columns of 𝑈 ⊛𝑑 are

symmetric with respect to the natural symmetrization of R𝑛
𝑑
�

(R𝑛)⊗𝑑 .

Along these lines, we introduce the operator Sym𝑑 : R𝑛
𝑑 → R𝑛𝑑

which symmetrizes elements of R𝑛
𝑑
with respect to the identifica-

tion R𝑛
𝑑
� (R𝑛)⊗𝑑 . With this notation, we have that

Sym𝑑 (𝑈 ⊛𝑑 ) = 𝑈 ⊛𝑑 .

Moreover, the columns of the matrix𝑈 ⊛𝑑 are precisely the unique
columns of the matrix Sym𝑑 (𝑈 ⊗𝑑 ).

Finally, for a vector space U, we have that U⊛𝑑 = Sym𝑑 (U⊗𝑑 ) is
the space of symmetric 𝑑th tensors over the spacd U. We also call

this the symmetric 𝑑th order left of the spaceU.

Leave-one-out distance. The leave-one-out distance of a matrix𝑈 is

a useful tool for analyzing least singular values. Given 𝑈 ∈ R𝑛×𝑚 ,

define the leave-one-out distance ℓ (𝑈 ) by

ℓ (𝑈 ) = min

𝑖
dist

(
𝑢𝑖 , Span{𝑢 𝑗 : 𝑗 ≠ 𝑖}

)
.

The least singular value of𝑈 is related to the leave-one-out distance

of𝑈 through the following lemma [24].

Lemma 3.1 (Leave one out distance). Let𝑈 ∈ R𝑛×𝑚 . Then

ℓ (𝑈 )
√
𝑚

≤ 𝜎min (𝑈 ) ≤ ℓ (𝑈 ) .

See also Lemma A.2 for a block-version of leave-one-out singular

value bounds.

In our work we also encounter the Jacobian of a polynomial map.

Given a vector valued function 𝑃 (𝑥) = (𝑝1 (𝑥), 𝑝2 (𝑥), . . . , 𝑝𝑁 (𝑥))
over underlying variables 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), the Jacobian is de-

fined as the (𝑛 × 𝑁 ) matrix of partial derivatives where the (𝑖, 𝑗)th
entry is

𝜕𝑝 𝑗
𝜕𝑥𝑖

. Thus, the linear approximation of 𝑃 (𝑥) around a point
𝑥 is simply 𝑃 (𝑥 + 𝜂) = 𝑃 (𝑥) + 𝐽 (𝑥)𝑇𝜂.
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4 HIERARCHICAL NETS AND
ANTI-CONCENTRATION FROM JACOBIAN
CONDITIONING

A complete version of this section, including all deferred proofs, can

be found in Appendix B. In this section, we will primarily deal with

a matrix M of dimensions 𝑁 ×𝑚 where𝑚 < 𝑁 . The columns will

be denoted by 𝑋𝑖 , and we wish to show a lower bound on 𝜎𝑚 (M).

In this section, we describe the finer 𝜀-net argument outlined in

Section 2. We begin with a formal definition of the CAA property.

Definition 4.1 (CAA property). We say that a random matrix M
with𝑚 columns has the CAA property with parameter 𝛽 > 0, if for

all 𝑘 ≥ 1, for all test vectors 𝛼 ∈ R𝑚 with at least 𝑘 coordinates of

magnitude 𝛿 , there exist 𝜆 > 0 and 𝑐 ≥ 8

𝛽
(dependent only onM)

such that

∀ℎ ∈ (0, 1), P[∥M𝛼 ∥ < 𝛿ℎ/𝜆] ≤ exp

(
−𝑐 min(𝑚,𝑘𝑚𝛽 ) log(1/ℎ)

)
.

Remark. We note that the condition 𝑐 ≥ 8/𝛽 may seem strong;

however, as we will see in applications, it is satisfied as long as𝑚

is small enough compared to 𝑁 , the number of rows of the matrix.

4.1 Hierarchical nets
The following shows that the CAA property implies a least singular

value guarantee.

Theorem 4.2. SupposeM is a random matrix with𝑚 columns and
that M satisfies the CAA property with some parameter 𝛽 > 0.
Suppose additionally that we have the spectral norm bound ∥M∥ ≤ 𝐿

with probability 1−𝜂. Then with probability at least 1−exp(−𝑚𝛽 )−𝜂,
we have

𝜎𝑚 (M) ≥ 1

(𝐿𝑚𝜆)2⌈
1

𝛽
⌉
,

where 𝜆 comes from the CAA property.

As discussed in Section 2, the natural approach to proving such a

result would be to take nets based on the sparsity of the test vector

𝛼 . In other words, if there are 𝑘 nonzero values of magnitude 𝛿 > 0,

the CAA property yields a least singular value lower bound of 𝛿/𝜆
(choosing ℎ to be a small constant), and we can take a union bound

over a net of size exp(𝑘). The issue with this argument is that 𝛼

might have many other non-zero values that are slightly smaller

than 𝛿 , and these might lead to a zero singular value (unless it so

happened that 𝜆 < 1/𝑚, which we do not have a control of). Of

course, in this case, we should have worked with a slightly smaller

value of 𝛿 , but this issue may recur, so we need a more careful

argument.

The rest of this subsection will focus on proving Theorem 4.2. For

defining the nets, we will use threshold values 𝜏1 = 1/𝑚, 𝜏2 = 𝜃/𝑚,

and so on (more generally, 𝜏 𝑗 = 𝜃
𝑗−1/𝑚). 𝜃 is a parameter that will

be chosen appropriately; for now we simply use 𝜃 ∈ (0, 1/𝑚).

We construct a sequence of nets N1,N2, . . . ,N𝑠−1 as follows. The
netN1 is a set of vectors parametrized by pairs (𝑟1, 𝑟2) ∈ N2, where:
(a) 1 ≤ 𝑟1 ≤ 𝑚1−𝛽

, (b) 𝑟2 ≤ 𝑚𝛽𝑟1. For each pair (𝑟1, 𝑟2), we include

all the vectors whose entries are integer multiples of
𝜃
𝑚 with have

exactly (𝑟1 + 𝑟2) non-zero entries, of which 𝑟1 entries are in (𝜏1, 1]
and 𝑟2 entries are in [𝜏2, 𝜏1]. Thus, the number of vectors in N1 for

a single pair (𝑟1, 𝑟2) is bounded by:(
𝑚

𝑟1

) (
𝑚

𝑟2

) (𝑚
𝜃

)𝑟1 (𝑚
𝜃

)𝑟2
<

(𝑚
𝜃

)
2(𝑟1+𝑟2 )

.

The next netN2 has vectors parametrized by (𝑟1, 𝑟2, 𝑟3) ∈ N3, where
(a) 𝑟2 ≤ 𝑚1−𝛽

, (b) 𝑟3 ≤ 𝑚𝛽𝑟2, and additionally, (c) 𝑟2 ≥ 𝑚𝛽𝑟1. For
each such tuple, we include vectors that have exactly (𝑟1 + 𝑟2 + 𝑟3)
non-zero entries (in the corresponding 𝜏 ranges as above), and have

values that are all integer multiples of 𝜃2/𝑚.

More generally, the vectors of N𝑗 will be parametrized by

(𝑟1, 𝑟2, . . . , 𝑟 𝑗+1) ∈ N𝑗+1, where (a) 𝑟 𝑗 ≤ 𝑚1−𝛽
, (b) 𝑟 𝑗+1 ≤ 𝑚𝛽𝑟 𝑗 , and

additionally, (c) for 1 ≤ 𝑖 < 𝑗 , we have 𝑟𝑖+1 > 𝑚𝛽𝑟𝑖 . In other words,

𝑟 𝑗+1 is the first value that does not grow by a factor𝑚𝛽 . For every

such tuple,N𝑗 includes all vectors that have exactly (𝑟1 + · · · +𝑟 𝑗+1)
non-zero entries, each of which is an integer multiple of

𝜃 𝑗

𝑚 , and

exactly 𝑟𝑖 of them in the range (𝜏𝑖 , 𝜏𝑖−1] for all 𝑖 ≤ 𝑗 + 1.

We have nets of this form for 𝑗 = 1, 2, . . . , 𝑠 − 1, where 𝑠 = ⌈ 1
𝛽
⌉. We

now have the following claim.

Claim 4.3. Fix any 1 ≤ 𝑗 < 𝑠 . We have

P

[
∃𝛼 ∈ N𝑗 , ∥M𝛼 ∥ < 𝜃 𝑗−

1

2

𝑚𝜆

]
< exp

(
− 1

2
𝑐𝑚 𝑗𝛽

)
.

Finally, we have a bigger net for all “dense” vectors 𝛼 , that have at

least𝑚1−𝛽
coordinates of magnitude ≥ 𝜃𝑠−1

𝑚 . This net consists of

vectors ∈ R𝑚 for which (a) every coordinate is an integer multiple

of 𝜃𝑠/𝑚 (between 0 and 1), and (b) at least𝑚1−𝛽
coordinates are

≥ 𝜃𝑠−1
𝑚 . Call this net N0. An easy upper bound for the size is

|N0 | ≤
(𝑚
𝜃𝑠

)𝑚
.

Using this, we have the following:

Claim 4.4.

P

[
∃𝛼 ∈ N0 : ∥M𝛼 ∥ < 𝜃𝑠−

1

2

𝑚𝜆

]
< exp

(
−𝑐
2

𝑚

)
.

One of the advantages of our 𝜀-net argument is that if we only

care about “well spread” vectors, we can obtain a much stronger

concentration bound (Eq (10)).

Observation 4.5. Suppose M is a random matrix that satisfies the
CAA property with parameter 𝛽 . Let us call a test vector 𝛼 (of length
≤ 1) “dense” if it has at least𝑚1−𝛽 coordinates of magnitude > 𝛿 .
Then

P

[
∃ dense 𝛼 : ∥M𝛼 ∥ < 1

(𝐿𝑚𝜆)2⌈
1

𝛽
⌉

]
< exp

(
− 1

2
𝑐𝑚

)
.

Note that in the above claim,𝑚 could be quite large compared to 𝑛.

The observation follows immediately from (10), but we will use it

later in Section 4.3.
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4.2 Anticoncentration of a vector of
homogeneous polynomials

We consider the following setting: let 𝑝1, 𝑝2, . . . , 𝑝𝑁 be a collection

of homogeneous polynomials over 𝑛 variables (𝑥1, 𝑥2, . . . , 𝑥𝑛), and
define

𝑃 (𝑥) =


𝑝1 (𝑥)
𝑝2 (𝑥)
.
.
.

𝑝𝑁 (𝑥)


(1)

Our goal will be to show anticoncentration results for 𝑃 . Specifically,

we want to prove that P[∥𝑃 (𝑥) − 𝑦∥ < 𝜀] is small for all 𝑦, where

𝑥 is a perturbation of some (arbitrary) vector 𝑥 ∈ R𝑛 . We give

a sufficient condition for proving such a result, in terms of the

Jacobian of 𝑃 . (See Section 3 for background.)

Definition 4.6 (Jacobian rank property). We say that 𝑃 has the

Jacobian rank property with parameters (𝑘, 𝑐,𝛾) if for all 𝜌 > 0 and

for all 𝑥 , the matrix 𝐽 (𝑥) has at least 𝑘 singular values of magnitude

≥ 𝑐𝜌 , with probability at least 1 − 𝛾 . Here, 𝑥 = 𝑥 + 𝜂, where 𝜂 ∼
N(0, 𝜌2) is a perturbation of the vector 𝑥 .

Comment. Indeed, all of our results will hold if we only have the

required condition for small enough perturbations 𝜌 . To keep the

results simple, we work with the stronger definition.

For many interesting settings of 𝑃 , the Jacobian rank property turns

out to be quite simple to prove. Our main result now is that the

property above implies an anticoncentration bound for 𝑃 .

Theorem 4.7. Suppose 𝑃 (𝑥) defined as above satisfies the Jacobian
rank property with parameters (𝑘, 𝑐,𝛾), and suppose further that the
Jacobian 𝑃 ′ is 𝑀-Lipschitz in our domain of interest. Let 𝑥 be any
point and let 𝑥 be a 𝜌-perturbation. Then for any ℎ > 0, we have

∀𝑦 ∈ R𝑁 , P
[
∥𝑃 (𝑥) − 𝑦∥ < 𝑐𝜌2ℎ

64𝑀𝑛𝑘

]
≤ 𝛾 + exp(−1

4

· 𝑘 log(1/ℎ)) .

A key ingredient in the proof is the following “linearization” based

lemma.

Lemma 4.8. Suppose 𝑥 is a point at which the Jacobian 𝐽 (𝑥) of a
polynomial 𝑃 has at least 𝑘 singular values of magnitude ≥ 𝜏 . Also
suppose that the norm of the Hessian of 𝑃 is bounded by 𝑀 in the
domain of interest. Then, for “small” perturbations, 0 < 𝜌 < 𝜏

4𝑀𝑛𝑘
,

we have that for any 𝜀 > 0,

∀𝑦, P[∥𝑃 (𝑥) − 𝑦∥ < 𝜀] <
(
2𝜀

𝜏𝜌

)𝑘
+

(
2𝑀𝜌𝑛𝑘

𝜏

)𝑘/2
.

We remark that the lemma does not imply Theorem 4.7 directly

because it only applies to the case where the perturbation 𝜌 is much

smaller than the singular value threshold 𝜏 .

4.3 Jacobian rank property for Khatri Rao
products

As the first application, let us use the machinery from the previous

sections to prove the following.

Theorem 4.9. Suppose 𝑈 ,𝑉 ∈ R𝑛×𝑚 and suppose their entries are
independently perturbed (by Gaussians N(0, 𝜌2)) to obtain �̃� and �̃� .
Then whenever𝑚 ≤ 𝑛2/𝐶 for some absolute constant 𝐶 , we have

𝜎min (�̃� ⊙ �̃� ) ≥ poly

(
𝜌,

1

𝑛

)
,

with probability 1 − exp(−Ω(𝑛)).

Note that the result is stronger in terms of the success probability

than the main result of [9] and matches the result of [4]. The fol-

lowing lemma is the main ingredient of the proof, as it proves the

CAA property for �̃� ⊙ �̃� . Theorem 4.9 then follows immediately

from Theorem 4.2.

Lemma 4.10. Suppose 𝛼 ∈ R𝑚 be a unit vector at least 𝑘 of whose
coordinates have magnitude ≥ 𝛿 . Let 𝑈 ,𝑉 be arbitrary (as above),
and let �̃� and �̃� be 𝜌 perturbations. Define 𝑃 (�̃� , �̃� ) = ∑

𝑖 𝛼𝑖�̃�𝑖 ⊗ 𝑣𝑖 .
Then for𝑀 = (𝑚 + 𝑛)2 and all ℎ > 0, we have

P

[
∥𝑃 (�̃� , �̃� )∥ < 𝛿ℎ · 𝜌2

64𝑀𝑛𝑘

]
< exp

(
− 1

16

𝑘𝑛 log(1/ℎ)
)
.

Remark. To see why this satisfies the CAA property (hypothesis

of Theorem 4.2), note that as long as𝑚 < 𝑛2/𝐶 for a sufficiently

large (absolute) constant 𝐶 , the term 𝑘𝑛
16

≥ 16min(𝑚,𝑘𝑚1/2), thus
it satisfies the condition with 𝛽 = 1/2.

The Jacobian property used to show Lemma 4.10 can be extended

to higher order Khatri-Rao products. We give details in Section B.3.

5 HIGHER ORDER LIFTS AND STRUCTURED
MATRICES FROM KRONECKER PRODUCTS

A complete version of this section, including all deferred proofs

can be found in Appendix C. We provide the following theorem.

Theorem 5.1. Suppose 𝑑 ∈ N, and let Φ : Sym𝑑 (R𝑛) → R𝐷 be an
orthogonal projection of rank 𝑅 = 𝛿

(𝑛+𝑑−1
𝑑

)
for some constant 𝛿 > 0,

and let Sym𝑑 : (R𝑛)⊗𝑑 → Sym𝑑 (R𝑛) be the orthogonal projection on
to the symmetric subspace of (R𝑛)⊗𝑑 . Let𝑈 = (𝑢𝑖 : 𝑖 ∈ [𝑚]) ∈ R𝑛×𝑚
be an arbitrary matrix, and let �̃� be a random 𝜌-perturbation of 𝑈 .
Then there exists a constant 𝑐𝑑 > 0 such that for 𝑚 ≤ 𝑐𝑑𝛿𝑛, with
probability at least 1 − exp

(
− Ω𝑑,𝛿 (𝑛)

)
, we have the least singular

value

𝜎(𝑚+𝑑−1
𝑑 ) (Φ�̃�

⊛𝑑 ) ≥ 𝜌𝑑

𝑛𝑂 (𝑑 ) , where

�̃� ⊛𝑑 B
(
Sym𝑑 (�̃�𝑖1 ⊗ �̃�𝑖2 · · · ⊗ �̃�𝑖𝑑 ) : 1 ≤ 𝑖1 ≤ 𝑖2 ≤ · · · ≤ 𝑖𝑑 ≤ 𝑛

)
.

(2)

In the above statement, one can also consider an arbitrary linear

operator Φ and suffer an extra factor of 𝜎𝑅 (Φ) in the least singular

value bound (by considering the projector onto the span of the top
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Figure 3: Left: The linear operator Ψ : R𝑛×𝑛 → R𝑅 interpreted
as a tensor consisting of a 𝑛 × 𝑛 array of 𝑅-dimensional vec-
tors. There are smoothed or random contractions applied
using matrices �̃� , �̃� ∈ R𝑛×𝑚 . Right: The operator Ψ(�̃� ⊗ �̃� ) :
R𝑚×𝑚 → R𝑅 interpreted as an 𝑚2 array of 𝑅-dimensional
vectors. Theorem 5.2 shows that under the conditions of the
theorem, with high probability the robust rank of this op-
erator is𝑚2 i.e, the least singular value of 𝑅 ×𝑚2 matrix is
inverse polynomial.

𝑅 singular vectors). In the rest of the section, we assume that Φ is

an orthogonal projector of rank 𝑅 without loss of generality.

Theorem 5.1 follows from the following theorem (Theorem 5.2)

which gives a non-symmetric analog of the same statement. The

proof of Theorem 5.1 follows from a reduction to Theorem 5.2 that

is given by Lemma C.4. In what follows, Ψ ∈ R𝑅×𝑛𝑑 denotes the

natural matrix representation of Φ such that Ψ𝑥⊗𝑑 = Φ(𝑥⊗𝑑 ) for
all 𝑥 ∈ R𝑛 .

Theorem 5.2. Suppose ℓ ∈ N, 𝑅 = 𝛿
(𝑛+𝑑−1

𝑑

)
for some constant 𝛿 > 0

and let Ψ : (R𝑛)⊗ℓ → R𝐷 be a linear operator with 𝜎𝑅 (Ψ) ≥ 1.
Suppose random matrices �̃� (1) , . . . , �̃� (𝑑 ) ∈ R𝑛×𝑚 are generated as
follows:

∀𝑗 ∈ [𝑑], �̃� ( 𝑗 ) = 𝑈 ( 𝑗 ) + 𝑍 ( 𝑗 ) , where 𝑍 ( 𝑗 ) ∼𝑖 .𝑖 .𝑑 N(0, 𝜌2)𝑛×𝑚

and is independent of𝑈 ( 𝑗 ) , (3)

while𝑈 ( 𝑗 ) ∈ R𝑛×𝑚 is arbitrary and can also depend on �̃� ( 𝑗+1) , . . . , �̃� (𝑑 ) .
Then there exists constants 𝑐𝑑 , 𝑐′𝑑 > 0 and an absolute constant 𝑐0 ≥ 1

such that for𝑚 ≤ 𝑐𝑑𝛿𝑛, with probability at least 1−exp

(
−Ω𝑑,𝛿 (𝑛)

)
,

we have

𝜎𝑚𝑑

(
Ψ

(
�̃� (1) ⊗ · · · ⊗ �̃� (𝑑 ) ) ) ≥

𝑐′
𝑑
𝜌𝑑

𝑛𝑐0𝑑
. (4)

While Ψ is specified as a matrix of dimension 𝑅×𝑛𝑑 in Theorem 5.2,

one can alternately view Ψ as a (𝑑 + 1)-order tensor of dimensions

𝑅×𝑛×𝑛×· · ·×𝑛 as shown in Figure 4. Theorem 5.2 then gives a lower

bound for the multilinear rank (in fact, for its robust analog) under

smoothed modal contractions along the 𝑑 modes of dimension 𝑛

each.

Applying Theorem 5.1 along with the block leave-one-out approach

(see Lemma A.2) we arrive at the following corollary.

Corollary 5.3. Suppose 𝑑, 𝑡 ∈ N and let 1 ≥ 𝛿1 > 𝛿2 > 0 be given.
Also let Φ : Sym𝑑 (R𝑛) → R𝐷 be an orthogonal projection of rank
𝑅 ≥ 𝛿1

(𝑛+𝑑−1
𝑑

)
. Let {𝑈 𝑗 }𝑡𝑗=1 ⊂ R𝑛×𝑚 be an arbitrary collection of

𝑛 ×𝑚 matrices, and for each 𝑗 , let �̃� 𝑗 be a random 𝜌-perturbation
of 𝑈 𝑗 . Then there exists a constant 𝑐𝑑 > 0 such that if 𝑡

(𝑚+𝑑−1
𝑑

)
≤

𝛿2
(𝑛+𝑑−1

𝑑

)
and 𝑚 ≤ 𝑐𝑑 (𝛿1 − 𝛿2)𝑛, then with probability at least

1 − exp

(
− Ω𝑑,𝛿1,𝛿2 (𝑛)

)
, we have the least singular value

𝜎
𝑡 (𝑚+𝑑−1

𝑑 )
(
Φ

[
�̃� ⊛𝑑
1

�̃� ⊛𝑑
2

. . . �̃� ⊛𝑑𝑡

] )
≥ 𝜌𝑑

√
𝑡𝑛𝑂 (𝑑 ) . (5)

5.1 Proof of Theorem 5.2
We will prove Theorem 5.2 for general 𝑑 by induction on 𝑑 . The

following crucial lemma considers a linear operator Ψ acting on

the space R𝑛1 ⊗ R𝑛2 , and shows that if Ψ has large rank Ω(𝑛1𝑛2),
then it has many “blocks” of large relative rank as described in

Section 2.3.

Lemma 5.4. Let Ψ ∈ R𝑅×(𝑛1𝑛2 ) be a projection matrix of rank
𝑅 = 𝛿𝑛1𝑛2 for some constant 𝛿 > 0, and let Ψ = [Ψ1 Ψ2 . . . Ψ𝑛1 ]
where the blocks Ψ𝑖 ∈ R𝑅×𝑛2 ∀𝑖 ∈ [𝑛1]. Then there exists constants
𝑐1, 𝑐2, 𝑐3 > 0 and a subset 𝑆1 ⊂ [𝑛1] with |𝑆1 | ≥ 𝑐1𝛿𝑛1 such that

∀𝑖 ∈ 𝑆1, 𝜎𝑐2𝛿𝑛2
(
Π⊥
𝑆1\{𝑖 }Ψ𝑖

)
≥ 1

(𝑛𝑘)𝑐3 , (6)

where Π⊥
𝑆
is the projection orthogonal to span

(
∪𝑖∈𝑆 colspan(Ψ𝑖 )

)
.

We note that while the statement of Lemma 5.4 is quite intuitive, the

proof is non-trivial because we require that in any selected block,

there must be many vectors with a large component orthogonal to

the entire span of the other selected blocks. We prove this lemma in

Section C.2 by restricting to randomly chosen columns as described

in the overview (Section 2.3).

The following lemma will be important in the inductive proof of the

theorem. It reasons about the robust rank (also called multi-linear

rank) after the modal contraction by a smoothed matrix along a

specific mode. The lemma is proved in slightly more generality; we

will use it for the theorem with 𝜀 = 1.

Lemma 5.5 (Robust rank under random contractions). Suppose
𝜀 ∈ (0, 1] is a constant. For every constant 𝛾,𝐶 > 0, there is a constant
𝑐 ∈ (0, 1) such that the following holds for all 𝑠 = 2

𝑜 (𝑘 ) . Consider
matrices 𝐴1, 𝐴2, . . . , 𝐴𝑠 ∈ R𝑅×𝑘 , 𝐶1, . . . ,𝐶𝑠 ∈ R𝑅×𝑚 and ∀𝑗 ∈ [𝑠]
let Π⊥

− 𝑗 denote the projector orthogonal to the span of the column
spaces of {𝐴 𝑗 ′ : 𝑗 ′ ≠ 𝑗, 𝑗 ′ ∈ [𝑠]}. Suppose the following conditions
are satisfied:

∀𝑗 ∈ [𝑠], 𝜎𝜀𝑘 (Π⊥
− 𝑗𝐴 𝑗 ) ≥ 𝑘

−𝛾
(7)

and 𝜎1 (𝐴 𝑗 ), 𝜎1 (𝐶 𝑗 ) ≤ 𝑘𝐶 . For a random 𝜌-perturbed matrix �̃� ∈
R𝑘×𝑚 with𝑚 ≤ 𝑐𝜀𝑘 , we have with probability at least 1−exp(−Ω(𝜀𝑘))
that

if ∀𝑗 ∈ [𝑠], 𝑀 𝑗 = 𝐶 𝑗 +𝐴 𝑗�̃� , then 𝜎𝑠𝑚
(
𝑀1 | · · · | 𝑀𝑠

)
≥ 𝜌

2𝑘𝛾+1
√
𝑠
.

Finally, we reduce the the setting of symmetric products to that of

non-symmetric products. We provide details in Section C.3.
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A AUXILIARY LEMMAS
Lemma A.1. Let �̃� ∈ R𝑛 be a 𝜌-smoothed vector and fix 𝛿 > 0.
There exists a universal constant 𝑐 > 0 such that

𝑃𝑟 [∥�̃�∥ < 𝛿] ≤
(𝑐𝛿
𝜌

)𝑛
Proof. The PDF of �̃� is bounded above by

(
𝜌
√
2𝜋)−𝑛

)
from which

we obtain that

𝑃𝑟 [∥�̃�∥ < 𝛿] ≤
∫
𝐵 (0,𝛿 )

(
𝜌
√
2𝜋

)−𝑛
𝑑𝑥 =

(
𝜌
√
2𝜋

)−𝑛
vol

(
𝐵(0, 𝛿)

)
=

(
𝜌
√
2𝜋

)−𝑛 (
𝛿
√
𝜋
)𝑛

Γ
(
𝑛
2
+ 1

) =

(
𝛿

𝜌
√
2

)𝑛
1

Γ( 𝑛
2
+ 1) .

Now, using Stirling’s approximation we have

Γ
(𝑛
2

+ 1

)
≥
√
𝜋𝑛

(√︂
𝑛

2𝑒

)𝑛
.

Substituting this probability in above gives the desired probability

upper bound. □

A.1 Block leave-one-out bounds
Lemma A.2. Let 𝑈1, . . . ,𝑈𝑡 ∈ R𝑛×𝑚 and for each 𝑗 = 1, . . . , 𝑡 let
Π⊥
− 𝑗 be the projection on to the orthogonal complement of

Ran

( [
𝑈1 . . . 𝑈 𝑗−1 𝑈 𝑗+1 . . .𝑈𝑡 .

] )
Define ℓ𝐵 ({𝑈 𝑗 }) = min𝑗 𝜎min (Π⊥

− 𝑗𝑈 𝑗 ) . Then
ℓ𝐵 ({𝑈 𝑗 })√

𝑡
≤ 𝜎min

( [
𝑈1 . . . 𝑈𝑡

] )
≤ ℓ𝐵 ({𝑈 𝑗 }) .

Proof. Let 𝛼 ∈ R𝑡𝑚 be a unit vector and write 𝛼 = 𝛼1 ⊕ · · · ⊕ 𝛼𝑡 .
Intuitively, 𝛼 𝑗 records the entries of alpha that are coefficients of

the columns of 𝑈 𝑗 in the product

[
𝑈1 . . . 𝑈𝑡

]
𝛼. Since 𝛼 is a

unit vector, there must exist some index 𝑗 such that ∥𝛼 𝑗 ∥ ≥ 1√
𝑡
.

From this we obtainΠ⊥
− 𝑗𝑈 𝑗𝛼 𝑗

 = Π⊥
− 𝑗

[
𝑈1 . . . 𝑈𝑡

]
𝛼

 ≤
[𝑈1 . . . 𝑈𝑡

]
𝛼
 .

Using the fact our lower bound on the norm of 𝛼 𝑗 and the fact

that ℓ𝐵 ({𝑈 𝑗 }) lower bounds the least singular value of Π⊥
− 𝑗𝑈 𝑗 , we

obtain

ℓ𝐵 ({𝑈 𝑗 })√
𝑡

≤
Π⊥

− 𝑗𝑈 𝑗𝛼 𝑗


from which the desired lower bound follows. The proof of the upper

bound is straightforward. □

A.2 Bounds on singular values of smoothed
matrices

Lemma A.3. Let 𝑉 ∈ R𝑛×𝑘 be an arbitrary matrix with 𝑘 ≤ 𝑛,
and let �̃� be a 𝜌 perturbation. Suppose 𝛼𝑖 are some scalars such that
𝛼𝑖 ≥ 𝛿 for all 𝑖 ≤ 𝑘 . Then for any ℎ ∈ (0, 1/2),

P
[
𝜎𝑘/2

(
�̃� diag(𝛼)

)
< ℎ𝜎𝛿

]
≤ exp(−1

8

𝑘𝑛 log(1/ℎ)).

Proof. Let us denote𝑊 = �̃� diag(𝛼), for convenience. Suppose that
𝜎𝑘/2 (𝑊 ) < ℎ𝜎𝛿 . This implies that there exists a set 𝐽 of𝑘/2 columns

of𝑊 with the property that the rest of the columns together have

a squared projection at most 𝑘2 (ℎ𝜎𝛿)2 orthogonal to the span of

the columns in 𝐽 .8

Now take any subset of columns 𝐽 with |𝐽 | = 𝑘/2; the probability
that any column 𝑖 ∉ 𝐽 has a projection of length < ℎ𝛿𝜌 orthogonal

to the span of 𝐽 is at mostℎ𝑛−
𝑘
2 . (This is because for each of the𝑛− 𝑘

2

directions orthogonal to the span of 𝐽 , we must have a component

< ℎ𝛿𝜌 , and we can use the standard Gaussian anticoncentration for

each direction.) Since there are 𝑘/2 columns 𝑖 ∉ 𝐽 , the probability

that all of them satisfy the condition is ≤ ℎ
𝑘
2
(𝑛− 𝑘

2
)
.

The total number of choices for 𝐽 is clearly at most 2
𝑘
, thus taking

a union bound, we have that the probability is at most

2
𝑘ℎ

𝑘
2
(𝑛− 𝑘

2
) ≤ exp(−1

8

𝑘𝑛 log(1/ℎ)).
□

B DEFERRED PROOFS FROM SECTION 4
In this section, we will primarily deal with a matrixM of dimen-

sions 𝑁 ×𝑚 where𝑚 < 𝑁 . The columns will be denoted by 𝑋𝑖 , and

we wish to show a lower bound on 𝜎𝑚 (M).

In this section, we describe the finer 𝜀-net argument outlined in

Section 2. We begin with a formal definition of the CAA property.

Definition 4.1 (CAA property). We say that a random matrix M
with𝑚 columns has the CAA property with parameter 𝛽 > 0, if for

all 𝑘 ≥ 1, for all test vectors 𝛼 ∈ R𝑚 with at least 𝑘 coordinates of

magnitude 𝛿 , there exist 𝜆 > 0 and 𝑐 ≥ 8

𝛽
(dependent only onM)

such that

∀ℎ ∈ (0, 1), P[∥M𝛼 ∥ < 𝛿ℎ/𝜆] ≤ exp

(
−𝑐 min(𝑚,𝑘𝑚𝛽 ) log(1/ℎ)

)
.

Remark. We note that the condition 𝑐 ≥ 8/𝛽 may seem strong;

however, as we will see in applications, it is satisfied as long as𝑚

is small enough compared to 𝑁 , the number of rows of the matrix.

B.1 Hierarchical nets
The following shows that the CAA property implies a least singular

value guarantee.

Theorem 4.2. SupposeM is a random matrix with𝑚 columns and
that M satisfies the CAA property with some parameter 𝛽 > 0.
Suppose additionally that we have the spectral norm bound ∥M∥ ≤ 𝐿

with probability 1−𝜂. Then with probability at least 1−exp(−𝑚𝛽 )−𝜂,
we have

𝜎𝑚 (M) ≥ 1

(𝐿𝑚𝜆)2⌈
1

𝛽
⌉
,

where 𝜆 comes from the CAA property.
8
Here, we are using the well known connection between the low rank error and an

approximation via columns [16].
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As discussed in Section 2, the natural approach to proving such a

result would be to take nets based on the sparsity of the test vector

𝛼 . In other words, if there are 𝑘 nonzero values of magnitude 𝛿 > 0,

the CAA property yields a least singular value lower bound of 𝛿/𝜆
(choosing ℎ to be a small constant), and we can take a union bound

over a net of size exp(𝑘). The issue with this argument is that 𝛼

might have many other non-zero values that are slightly smaller

than 𝛿 , and these might lead to a zero singular value (unless it so

happened that 𝜆 < 1/𝑚, which we do not have a control of). Of

course, in this case, we should have worked with a slightly smaller

value of 𝛿 , but this issue may recur, so we need a more careful

argument.

The rest of this subsection will focus on proving Theorem 4.2. For

defining the nets, we will use threshold values 𝜏1 = 1/𝑚, 𝜏2 = 𝜃/𝑚,

and so on (more generally, 𝜏 𝑗 = 𝜃
𝑗−1/𝑚). 𝜃 is a parameter that will

be chosen appropriately; for now we simply use 𝜃 ∈ (0, 1/𝑚).

We construct a sequence of nets N1,N2, . . . ,N𝑠−1 as follows. The
netN1 is a set of vectors parametrized by pairs (𝑟1, 𝑟2) ∈ N2, where:
(a) 1 ≤ 𝑟1 ≤ 𝑚1−𝛽

, (b) 𝑟2 ≤ 𝑚𝛽𝑟1. For each pair (𝑟1, 𝑟2), we include
all the vectors whose entries are integer multiples of

𝜃
𝑚 with have

exactly (𝑟1 + 𝑟2) non-zero entries, of which 𝑟1 entries are in (𝜏1, 1]
and 𝑟2 entries are in [𝜏2, 𝜏1].

Thus, the number of vectors in N1 for a single pair (𝑟1, 𝑟2) is

bounded by: (
𝑚

𝑟1

) (
𝑚

𝑟2

) (𝑚
𝜃

)𝑟1 (𝑚
𝜃

)𝑟2
<

(𝑚
𝜃

)
2(𝑟1+𝑟2 )

.

The next netN2 has vectors parametrized by (𝑟1, 𝑟2, 𝑟3) ∈ N3, where
(a) 𝑟2 ≤ 𝑚1−𝛽

, (b) 𝑟3 ≤ 𝑚𝛽𝑟2, and additionally, (c) 𝑟2 ≥ 𝑚𝛽𝑟1. For
each such tuple, we include vectors that have exactly (𝑟1 + 𝑟2 + 𝑟3)
non-zero entries (in the corresponding 𝜏 ranges as above), and have

values that are all integer multiples of 𝜃2/𝑚.

More generally, the vectors ofN𝑗 will be parametrized by (𝑟1, 𝑟2, . . . , 𝑟 𝑗+1) ∈
N𝑗+1, where (a) 𝑟 𝑗 ≤ 𝑚1−𝛽

, (b) 𝑟 𝑗+1 ≤ 𝑚𝛽𝑟 𝑗 , and additionally, (c)

for 1 ≤ 𝑖 < 𝑗 , we have 𝑟𝑖+1 > 𝑚𝛽𝑟𝑖 . In other words, 𝑟 𝑗+1 is the

first value that does not grow by a factor𝑚𝛽 . For every such tuple,

N𝑗 includes all vectors that have exactly (𝑟1 + · · · + 𝑟 𝑗+1) non-zero
entries, each of which is an integer multiple of

𝜃 𝑗

𝑚 , and exactly 𝑟𝑖
of them in the range (𝜏𝑖 , 𝜏𝑖−1] for all 𝑖 ≤ 𝑗 + 1.

We have nets of this form for 𝑗 = 1, 2, . . . , 𝑠 − 1, where 𝑠 = ⌈ 1
𝛽
⌉. We

now have the following claim.

Claim 4.3. Fix any 1 ≤ 𝑗 < 𝑠 . We have

P

[
∃𝛼 ∈ N𝑗 , ∥M𝛼 ∥ < 𝜃 𝑗−

1

2

𝑚𝜆

]
< exp

(
− 1

2
𝑐𝑚 𝑗𝛽

)
.

Proof. First consider any single 𝛼 ∈ N𝑗 . By assumption, it has 𝑟 𝑗

coordinates with magnitude ≥ 𝜃 𝑗−1
𝑚 . Thus, from the CAA property,

P

[
∥M𝛼 ∥ < 𝜃 𝑗−1

𝑚

ℎ

𝜆

]
≤ exp

(
−𝑐𝑟 𝑗𝑚𝛽 log(1/ℎ)

)
. (8)

The number of vectors inN𝑗 for a given tuple of 𝑟 𝑗 values is clearly

bounded by

(
𝑚
𝜃 𝑗

)𝑟1+𝑟2+···+𝑟 𝑗+1
. We choose ℎ = 𝜃1/2, and 𝜃 < 1/𝑚,

and argue that as long as these are true,

(𝑟1 + · · · + 𝑟 𝑗+1) log
𝑚

𝜃 𝑗
≤ 𝑐

2

𝑟 𝑗𝑚
𝛽
log(1/ℎ) . (9)

We can simplify this by noting that from our assumptions on 𝑟 𝑗 ,

𝑟 𝑗𝑚
𝛽 ≥ 1

2
(𝑟1 + 𝑟2 + · · · + 𝑟 𝑗+1). Thus to show (9), it suffices to have

𝑐

4

log

1

ℎ
≥ log

𝑚

𝜃 𝑗
.

Since 𝜃 < 1/𝑚, we have 𝜃 𝑗/𝑚 > 𝜃 𝑗+1 > 𝜃𝑠 . Since 𝑐 ≥ 8𝑠 and

ℎ = 𝜃1/2, the above inequality holds, and so inequality (9) also

holds.

Next, we observe that for any tuple of {𝑟𝑖 } values in N𝑗 , since

𝑟1 ≥ 1, we have 𝑟 𝑗 ≥ 𝑚 ( 𝑗−1)𝛽
, which implies that 𝑟 𝑗𝑚

𝛽 ≥ 𝑚 𝑗𝛽
.

Using this fact, together with (9), we first take a union bound over

all 𝛼 ∈ N𝑗 corresponding to a given tuple (𝑟𝑖 )1≤𝑖≤ 𝑗+1 (call this set
N ′
𝑗
for now), and obtain

P

[
∃𝛼 ∈ N ′

𝑗 : ∥M𝛼 ∥ < 𝜃 𝑗−
1

2

𝑚𝜆

]
< exp

(
−𝑐
2

𝑚 𝑗𝛽
log(1/ℎ)

)
.

Now since the total number of tuples is easily bounded by𝑚 𝑗+1 ≤
𝑚𝑠 , taking a further union bound over these choices and simplifying,

we obtain the claim. □

Finally, we have a bigger net for all “dense” vectors 𝛼 , that have at

least𝑚1−𝛽
coordinates of magnitude ≥ 𝜃𝑠−1

𝑚 . This net consists of

vectors ∈ R𝑚 for which (a) every coordinate is an integer multiple

of 𝜃𝑠/𝑚 (between 0 and 1), and (b) at least𝑚1−𝛽
coordinates are

≥ 𝜃𝑠−1
𝑚 . Call this net N0.

An easy upper bound for the size is

|N0 | ≤
(𝑚
𝜃𝑠

)𝑚
.

Using this, we have the following:

Claim 4.4.

P

[
∃𝛼 ∈ N0 : ∥M𝛼 ∥ < 𝜃𝑠−

1

2

𝑚𝜆

]
< exp

(
−𝑐
2

𝑚

)
.

Proof. First, consider any fixed 𝛼 ∈ N0. Using part (b) of the

definition of N0, we can use the CAA property to obtain

P

[
∥M𝛼 ∥ < 𝜃𝑠−1ℎ

𝑚𝜆

]
< exp (−𝑐𝑚 log(1/ℎ)) ,

for any parameter ℎ. As before, we show that this is small enough

to take a union bound over |N0 | terms. Specifically, we argue that

setting ℎ = 𝜃1/2,

log |N0 | ≤ 𝑚 log

𝑚

𝜃𝑠
≤ 1

4

𝑐𝑚 log

1

𝜃
.

The latter holds because 𝜃 < 1/𝑚, and 𝑐 ≥ 8𝑠 ≥ 4(𝑠 + 1). This

completes the proof. □

We can now complete the proof of Theorem 4.2 as follows.
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Proof of Theorem 4.2. Consider any 𝛼 ∈ R𝑚 with ∥𝛼 ∥ = 1. Also,

suppose we condition on the event that ∥M∥ ≤ 𝐿 (which happens

with probability 1−𝜂). Let 𝑠 = ⌈ 1
𝛽
⌉ as before. Now define 𝑟1, 𝑟2, . . . 𝑟𝑠

to be the number of entries of 𝛼 in the intervals ( 1

𝑚 , 1], (
𝜃
𝑚 ,

1

𝑚 ],
and so on. We consider two cases:

Case 1. (𝑟1 + 𝑟2 + · · · + 𝑟𝑠 ) ≥ 𝑚1−𝛽
. I.e., there are sufficiently many

“large” coordinates in 𝛼 .

In this case, we observe that there exists a vector 𝛼 ′ ∈ N0 such

that ∥𝛼 − 𝛼 ′∥ ≤ 𝜃𝑠 . Now, we have from Claim 4.4 that with high

probability, ∥M𝛼 ′∥ ≥ 𝜃
𝑠− 1

2

𝑚𝜆
. If this holds, then ∥M𝛼 ∥ ≥ 𝜃

𝑠− 1

2

𝑚𝜆
−𝐿𝜃𝑠 ,

where 𝐿 is the spectral norm bound onM. We choose 𝜃 such that

𝐿𝜃1/2 <
1

𝑚𝜆
⇐⇒ 𝜃 <

1

𝑚2𝐿2𝜆2
.

Thus for this value of 𝜃 ,

P

[
∃𝛼, ∥𝛼 ∥ = 1, satisfying (Case 1) : ∥M𝛼 ∥ < 𝜃𝑠−

1

2

2𝑚𝜆

]
< exp

(
−𝑐
2

𝑚

)
. (10)

Case 2. (𝑟1 + 𝑟2 + · · · + 𝑟𝑠 ) < 𝑚1−𝛽
. In this case, we claim that

we must have some index 𝑗 < 𝑠 such that 𝑟 𝑗+1/𝑟 𝑗 ≤ 𝑚𝛽 . This is

because 𝑟1 ≥ 1 (a unit vector must have some entry > 1/𝑚), and if

the above does not hold, then 𝑟 𝑗 > 𝑚
( 𝑗−1)𝛽

. Plugging 𝑗 = 𝑠 gives a

contradiction to our assumption that (𝑟1 + 𝑟2 + . . . 𝑟𝑠 ) < 𝑚1−𝛽
.

Thus, let 𝑗 be the smallest index for which we have 𝑟 𝑗+1/𝑟 𝑗 ≤ 𝑚𝛽 .
We can now consider the net N𝑗 and find some 𝛼 ′ ∈ N𝑗 such that

∥𝛼 − 𝛼 ′∥ < 𝜃 𝑗 .

We can use an argument identical to the one in (Case 1), this time

leveraging Claim 4.3, to conclude that for all 𝑗 ,

P

[
∃𝛼, ∥𝛼 ∥ = 1, satisfying (Case 2) : ∥M𝛼 ∥ < 𝜃𝑠−

1

2

2𝑚𝜆

]
<

∑︁
1≤ 𝑗<𝑠

exp

(
−𝑐
2

𝑚 𝑗𝛽
)
.

The first term on the RHS dominates, and plugging in the chosen

values of 𝜃, 𝑠 , this completes the proof. □

One of the advantages of our 𝜀-net argument is that if we only

care about “well spread” vectors, we can obtain a much stronger

concentration bound (Eq (10)).

Observation 4.5. Suppose M is a random matrix that satisfies the
CAA property with parameter 𝛽 . Let us call a test vector 𝛼 (of length
≤ 1) “dense” if it has at least𝑚1−𝛽 coordinates of magnitude > 𝛿 .
Then

P

[
∃ dense 𝛼 : ∥M𝛼 ∥ < 1

(𝐿𝑚𝜆)2⌈
1

𝛽
⌉

]
< exp

(
− 1

2
𝑐𝑚

)
.

Note that in the above claim,𝑚 could be quite large compared to 𝑛.

The observation follows immediately from (10), but we will use it

later in Section B.3.

B.2 Anticoncentration of a vector of
homogeneous polynomials

We consider the following setting: let 𝑝1, 𝑝2, . . . , 𝑝𝑁 be a collection

of homogeneous polynomials over 𝑛 variables (𝑥1, 𝑥2, . . . , 𝑥𝑛), and
define

𝑃 (𝑥) =


𝑝1 (𝑥)
𝑝2 (𝑥)
.
.
.

𝑝𝑁 (𝑥)


(11)

Our goal will be to show anticoncentration results for 𝑃 . Specifically,

we want to prove that P[∥𝑃 (𝑥) − 𝑦∥ < 𝜀] is small for all 𝑦, where

𝑥 is a perturbation of some (arbitrary) vector 𝑥 ∈ R𝑛 . We give

a sufficient condition for proving such a result, in terms of the

Jacobian of 𝑃 . (See Section 3 for background.)

Definition B.1 (Jacobian rank property). We say that 𝑃 has the

Jacobian rank property with parameters (𝑘, 𝑐,𝛾) if for all 𝜌 > 0 and

for all 𝑥 , the matrix 𝐽 (𝑥) has at least 𝑘 singular values of magnitude

≥ 𝑐𝜌 , with probability at least 1 − 𝛾 . Here, 𝑥 = 𝑥 + 𝜂, where 𝜂 ∼
N(0, 𝜌2) is a perturbation of the vector 𝑥 .

Comment. Indeed, all of our results will hold if we only have the

required condition for small enough perturbations 𝜌 . To keep the

results simple, we work with the stronger definition.

For many interesting settings of 𝑃 , the Jacobian rank property turns

out to be quite simple to prove. Our main result now is that the

property above implies an anticoncentration bound for 𝑃 .

Theorem 4.7. Suppose 𝑃 (𝑥) defined as above satisfies the Jacobian
rank property with parameters (𝑘, 𝑐,𝛾), and suppose further that the
Jacobian 𝑃 ′ is 𝑀-Lipschitz in our domain of interest. Let 𝑥 be any
point and let 𝑥 be a 𝜌-perturbation. Then for any ℎ > 0, we have

∀𝑦 ∈ R𝑁 , P
[
∥𝑃 (𝑥) − 𝑦∥ < 𝑐𝜌2ℎ

64𝑀𝑛𝑘

]
≤ 𝛾 + exp(−1

4

· 𝑘 log(1/ℎ)) .

A key ingredient in the proof is the following “linearization” based

lemma.

Lemma 4.8. Suppose 𝑥 is a point at which the Jacobian 𝐽 (𝑥) of a
polynomial 𝑃 has at least 𝑘 singular values of magnitude ≥ 𝜏 . Also
suppose that the norm of the Hessian of 𝑃 is bounded by 𝑀 in the
domain of interest. Then, for “small” perturbations, 0 < 𝜌 < 𝜏

4𝑀𝑛𝑘
,

we have that for any 𝜀 > 0,

∀𝑦, P[∥𝑃 (𝑥) − 𝑦∥ < 𝜀] <
(
2𝜀

𝜏𝜌

)𝑘
+

(
2𝑀𝜌𝑛𝑘

𝜏

)𝑘/2
.

We remark that the lemma does not imply Theorem 4.7 directly

because it only applies to the case where the perturbation 𝜌 is much

smaller than the singular value threshold 𝜏 .
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Proof. Let 𝜂 be the random perturbation of 𝑥 as in the lemma

statement. We have

𝑃 (𝑥 + 𝜂) = 𝑃 (𝑥) + 𝐽 (𝑥)𝑇𝜂 + 𝐸 (𝜂),
where 𝐸 (𝜂) is an error term, bounded in magnitude by 𝑀 ∥𝜂∥2
because of our assumption on the Hessian. Now, the desired proba-

bility is equivalent to

P
[
𝐽 (𝑥)𝑇𝜂 + 𝐸 (𝜂) ∈ Ball(𝑦 − 𝑃 (𝑥), 𝜀)

]
.

From the bound on 𝜂, the above probability can be upper bounded

by

P
[
𝐽 (𝑥)𝑇𝜂 ∈ Ball

(
𝑦 − 𝑃 (𝑥), 𝜀 +𝑀 ∥𝜂∥2

)]
.

Let us denote the event in the parentheses above by E. Now, con-
sider the top 𝑘 singular directions of 𝐽 (𝑥); suppose the eigenvalues
are 𝜎1, 𝜎2, . . . , 𝜎𝑘 , and suppose 𝜂1, 𝜂2, . . . , 𝜂𝑘 are the components of

𝜂 along these directions. By hypothesis, 𝜎𝑖 ≥ 𝜏 for all 𝑖 ≤ 𝑘 . Thus
if E occurs, we also have,

∀𝑖 ≤ 𝑘, 𝜎𝑖𝜂𝑖 ∈ Ball

(
(𝑦 − 𝑃 (𝑥))𝑖 , 𝜀 +𝑀 ∥𝜂∥2

)
. (12)

Let 𝜃 > 1 be a parameter that we set later. We note that by Gaussian

tail bounds,

P[∥𝜂∥2 > 𝑛𝜌2𝑘𝜃 ] ≤ exp(−𝑘𝜃 ) .

In what follows, let us condition on the event ∥𝜂∥2 ≤ 𝑛𝜌2𝑘𝜃 . Then,
the probability in (12) is upper bounded by(

𝜀 +𝑀𝜌2𝑛𝑘𝜃
𝜏𝜌

)𝑘
≤

(
2𝜀

𝜏𝜌

)𝑘
+

(
2𝑀𝜌𝑛𝑘𝜃

𝜏

)𝑘
.

We will choose the parameter 𝜃 = log

(
𝜏

𝑀𝜌𝑛𝑘

)
. This ensures that

the term exp(−𝑘𝜃 ) is the same order of magnitude as the last term

on the RHS above. Simplifying, we obtain the desired claim. □

Proof of Theorem 4.7. The main idea in the proof is to view the

perturbation 𝑥 → 𝑥 as occurring in two independent steps 𝑥 →
𝑥 ′ → 𝑥 , where the first perturbation has norm 𝜌

√
1 − 𝑧2 and the

second perturbation has norm 𝜌𝑧. By standard properties of Gauss-

ian perturbations, this is equivalent to a 𝜌 perturbation of 𝑥 . We

pick the parameter 𝑧 < 1/2 carefully (later).

Using the Jacobian rank property of 𝑃 on the first perturbation, we

have that with probability ≥ 1 − 𝛾 , 𝐽 (𝑥 ′) has at least 𝑘 singular

values of magnitude ≥ 𝑐 (𝜌/2) (we are using the fact that 𝑧 < 1/2).
Let us call this value 𝜏 , which we will use to apply Lemma 4.8. As

long as we choose 𝑧 such that

𝑧𝜌 <
𝜏

4𝑀𝑛𝑘
=

𝑐𝜌

8𝑀𝑛𝑘
,

we can apply the Lemma to conclude that for any 𝜀 > 0,

∀𝑦, P[∥𝑃 (𝑥) − 𝑦∥ < 𝜀] <
(
2𝜀

𝜏𝑧𝜌

)𝑘
+

(
2𝑀𝑧𝜌𝑛𝑘

𝜏

)𝑘/2
=

(
4𝜀

𝑧𝜌2

)𝑘
+

(
4𝑀𝑧𝑛𝑘

𝑐

)𝑘/2
.

Let 0 < 𝑓 < 1/2 be a parameter that we will fix shortly. We first

choose 𝑧 =
𝑐 𝑓

8𝑀𝑛𝑘
, so that the latter term above becomes (𝑓 /2)𝑘/2.

Then, we pick 𝜀 =
𝑓 𝑧𝜌2

8
, so that the former term becomes (𝑓 /2)𝑘 .

Putting these together, we have that for all 𝑓 ∈ (0, 1/2),

∀𝑦, P
[
∥𝑃 (𝑥) − 𝑦∥ < 𝑓 2𝑐𝜌2

64𝑀𝑛𝑘

]
< 𝑓 𝑘/2 = exp

(
−1

2

𝑘 log(1/𝑓 )
)
.

Writing ℎ = 𝑓 2 and incorporating the failure probability of the

Jacobian rank guarantee, the theorem follows. □

B.3 Jacobian rank property for Khatri Rao
products

As the first application, let us use the machinery from the previous

sections to prove the following.

Theorem 4.9. Suppose 𝑈 ,𝑉 ∈ R𝑛×𝑚 and suppose their entries are
independently perturbed (by Gaussians N(0, 𝜌2)) to obtain �̃� and �̃� .
Then whenever𝑚 ≤ 𝑛2/𝐶 for some absolute constant 𝐶 , we have

𝜎min (�̃� ⊙ �̃� ) ≥ poly

(
𝜌,

1

𝑛

)
,

with probability 1 − exp(−Ω(𝑛)).

Note that the result is stronger in terms of the success probability

than the main result of [9] and matches the result of [4]. The fol-

lowing lemma is the main ingredient of the proof, as it proves the

CAA property for �̃� ⊙ �̃� . Theorem 4.9 then follows immediately

from Theorem 4.2.

Lemma 4.10. Suppose 𝛼 ∈ R𝑚 be a unit vector at least 𝑘 of whose
coordinates have magnitude ≥ 𝛿 . Let 𝑈 ,𝑉 be arbitrary (as above),
and let �̃� and �̃� be 𝜌 perturbations. Define 𝑃 (�̃� , �̃� ) = ∑

𝑖 𝛼𝑖�̃�𝑖 ⊗ 𝑣𝑖 .
Then for𝑀 = (𝑚 + 𝑛)2 and all ℎ > 0, we have

P

[
∥𝑃 (�̃� , �̃� )∥ < 𝛿ℎ · 𝜌2

64𝑀𝑛𝑘

]
< exp

(
− 1

16

𝑘𝑛 log(1/ℎ)
)
.

Remark. To see why this satisfies the CAA property (hypothesis

of Theorem 4.2), note that as long as𝑚 < 𝑛2/𝐶 for a sufficiently

large (absolute) constant 𝐶 , the term 𝑘𝑛
16

≥ 16min(𝑚,𝑘𝑚1/2), thus
it satisfies the condition with 𝛽 = 1/2.

Proof. Recall that 𝑃 is a map that has𝑚𝑛 variables whose output

is an 𝑛2 dimensional vector. We will argue (using the 𝑘 large co-

ordinates of 𝛼) that its Jacobian has sufficiently many nontrivial

eigenvalues with high probability. To see this, observe that for a

single term 𝛼𝑖 (�̃�𝑖 ⊗ 𝑣𝑖 ), the Jacobian (with respect to only 𝑢𝑖 vari-

ables) is simply an 𝑛2 × 𝑛 matrix, structured as follows: in the 𝑗th

column, the 𝑗th “block” of size 𝑛 is 𝛼𝑖𝑣𝑖 , and the rest of the entries

are 0. This holds for all 𝑗 . Thus if |𝛼𝑖 | ≥ 𝛿 , this matrix has 𝑛 singular

values ≥ 𝛿 ∥𝑣𝑖 ∥.

Next, if we take

∑
𝑖 𝛼𝑖 (�̃�𝑖 ⊗ 𝑣𝑖 ), as the set of variables is different for

every 𝑖 , the overall Jacobian is the concatenation of the matrices

described above (which is an (𝑛2 × 𝑛𝑚) matrix). Thus, suppose we

consider indices 𝐼 = {𝑖 : |𝛼𝑖 | > 𝛿} and form the matrix (call it𝑊 )

with columns {𝛼𝑖𝑣𝑖 }𝑖∈𝐼 . If we argue that𝑊 has 𝑘′ large singular
values, then the structure above will imply that the Jacobian has

𝑛𝑘′ large singular values.
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Thus, let us focus on𝑊 . LemmaA.3 now shows that for anyℎ,𝑊 has

at least 𝑘/2 singular values of magnitude ≥ ℎ𝛿𝜌 , with probability at

least 1− exp(− 1

8
𝑘𝑛 log(1/ℎ)). Thus, the Jacobian has 𝑛𝑘/2 singular

values of magnitude ≥ ℎ𝛿𝜌 (with the same probability). Thus, we

can apply Theorem 4.7, with parameters 𝑐 = ℎ𝛿 and rank 𝑛𝑘/2. We

obtain, for any ℎ > 0,

P

[
∥𝑃 (𝑥)∥ < 𝜌2ℎ2𝛿

64𝑀𝑛𝑘

]
≤ 2 exp

(
−1

8

𝑘𝑛 log(1/ℎ)
)
.

Replacing ℎ2 with ℎ, the lemma follows. □

Higher order Khatri-Rao products. The Jacobian property used to

show Lemma 4.10 can be extended to higher order Khatri-Rao

products. We outline the argument for third order tensors: suppose

{�̃�𝑖 , 𝑣𝑖 , �̃�𝑖 } are 𝜌-perturbed vectors, and define 𝑃 =
∑
𝑖 𝛼𝑖 (�̃�𝑖 ⊗ 𝑣𝑖 ⊗

�̃�𝑖 ), for a coefficient vector 𝛼 that has 𝑘 coordinates of magnitude

≥ 𝛿 . Now, the Jacobian (with respect to the �̃� variables) will have as

a sub-matrix, the matrix𝑊 whose columns are {𝛼𝑖 (𝑣𝑖 ⊗ �̃�𝑖 )}. Now,
we need to show that𝑊 has at least 𝑘/2 large singular values, for
𝑘 up to Ω(𝑛2). Instead of a direct argument, we can now use our

result for Khatri-Rao products of two matrices!

The natural idea is to use our result for Khatri-Rao products (i.e.,

Theorem 4.9) directly. While this shows that all 𝑘 singular values

of𝑊 are large enough, the success probability we obtain is not

high enough. We would ideally want a success probability close to

1 − exp(−𝑘𝑛) (and not “merely” 1 − exp(−𝑛) as the Theorem gives

us). The key observation is that such an improved bound is possible

if we start with the weaker goal of obtaining 𝑘/2 singular values of
large magnitude. Indeed, the following simple lemma shows that

for a matrix𝑊 with 𝑘 columns to have 𝑘/2 large singular values, it
suffices to show that ∥𝑊𝛼 ∥ is large for all “well spread” vectors 𝛼 .
Specifically, it shows that if𝑊 had fewer than 𝑘/2 large singular
values, the space spanned by the small singular values must have a

well-spread vector.

Lemma B.2. Suppose 𝑆 ⊂ R𝑛 is a subspace of dimension 𝑘 . Then
there exists a unit vector𝑢 ∈ 𝑆 that has at least 𝑘 entries of magnitude
≥ 1

𝑘
√
𝑛
.

Proof. Let 𝑈 ∈ R𝑛×𝑘 be a matrix whose columns form an or-

thonormal basis for 𝑆 . We can now apply Lemma C.2 to 𝑈𝑇 to

conclude that there exists a subset 𝐽 of the rows of 𝑈 such that

𝜎𝑘 (𝑈 | 𝐽 ) ≤ 1/
√
𝑛𝑘 . [Here, 𝑈 | 𝐽 refers to the matrix 𝑈 restricted to

the rows 𝐽 .]

Now this implies that every vector in the column span of𝑈 | 𝐽 can

be expressed as𝑈 | 𝐽 𝛼 , where 𝛼 ∈ R𝑘 and ∥𝛼 ∥ ≤
√
𝑛𝑘 . In particular,

we can conclude that the vector with 1/
√
𝑘 in all 𝑘 coordinates can

be so expressed. By considering 𝛼 ′ = 𝛼
∥𝛼 ∥ , we have that 𝑈𝛼

′
has

entries ≥ 1√
𝑘 ∥𝛼 ∥

≥ 1

𝑘
√
𝑛
in all the entries corresponding to 𝐽 .

Noting that |𝐽 | = 𝑘 completes the proof. □

Next, for well-spread vectors, we can use Observation 4.5 to con-

clude that ∥𝑊𝛼 ∥ is large with very high probability (around 1 −

exp(−𝑘𝑛), as desired). Thus, unless𝑊 has 𝑘/2 large singular values,
we have a contradiction. Then, we can complete the proof as before,

except nowwe apply Theorem 4.2 with 𝛽 = 1/3. We omit the details

as they are identical to Theorem 4.9.

Other applications. In the subsequent section, we will see other

natural candidates for M including, most significantly, matrices

obtained by applying a linear operator to a Kronecker product

of matrices on some base variables. It is natural to ask if we can

prove these results using the Jacobian based techniques we saw

above. It turns out that this is possible for second order Kronecker

products (here the CAA property corresponds to amplification for

test “matrices” 𝛼 that have large rank). But the method is not strong

enough to handle higher order Kronecker products. We omit the

details, since we can handle the general case via our new technique

of smoothed contractions.

C DEFERRED PROOFS FROM SECTION 5
We provide the following theorem.

Theorem 5.1. Suppose 𝑑 ∈ N, and let Φ : Sym𝑑 (R𝑛) → R𝐷 be an
orthogonal projection of rank 𝑅 = 𝛿

(𝑛+𝑑−1
𝑑

)
for some constant 𝛿 > 0,

and let Sym𝑑 : (R𝑛)⊗𝑑 → Sym𝑑 (R𝑛) be the orthogonal projection on
to the symmetric subspace of (R𝑛)⊗𝑑 . Let𝑈 = (𝑢𝑖 : 𝑖 ∈ [𝑚]) ∈ R𝑛×𝑚
be an arbitrary matrix, and let �̃� be a random 𝜌-perturbation of 𝑈 .
Then there exists a constant 𝑐𝑑 > 0 such that for 𝑚 ≤ 𝑐𝑑𝛿𝑛, with
probability at least 1 − exp

(
− Ω𝑑,𝛿 (𝑛)

)
, we have the least singular

value

𝜎(𝑚+𝑑−1
𝑑 ) (Φ�̃�

⊛𝑑 ) ≥ 𝜌𝑑

𝑛𝑂 (𝑑 ) , where

�̃� ⊛𝑑 B
(
Sym𝑑 (�̃�𝑖1 ⊗ �̃�𝑖2 · · · ⊗ �̃�𝑖𝑑 ) : 1 ≤ 𝑖1 ≤ 𝑖2 ≤ · · · ≤ 𝑖𝑑 ≤ 𝑛

)
.

(2)

In the above statement, one can also consider an arbitrary linear

operator Φ and suffer an extra factor of 𝜎𝑅 (Φ) in the least singular

value bound (by considering the projector onto the span of the top

𝑅 singular vectors). In the rest of the section, we assume that Φ is

an orthogonal projector of rank 𝑅 without loss of generality.

Theorem 5.1 follows from the following theorem (Theorem 5.2)

which gives a non-symmetric analog of the same statement. The

proof of Theorem 5.1 follows from a reduction to Theorem 5.2 that

is given by Lemma C.4. In what follows, Ψ ∈ R𝑅×𝑛𝑑 denotes the

natural matrix representation of Φ such that Ψ𝑥⊗𝑑 = Φ(𝑥⊗𝑑 ) for
all 𝑥 ∈ R𝑛 .

Theorem 5.2. Suppose ℓ ∈ N, 𝑅 = 𝛿
(𝑛+𝑑−1

𝑑

)
for some constant 𝛿 > 0

and let Ψ : (R𝑛)⊗ℓ → R𝐷 be a linear operator with 𝜎𝑅 (Ψ) ≥ 1.
Suppose random matrices �̃� (1) , . . . , �̃� (𝑑 ) ∈ R𝑛×𝑚 are generated as
follows:

∀𝑗 ∈ [𝑑], �̃� ( 𝑗 ) = 𝑈 ( 𝑗 ) + 𝑍 ( 𝑗 ) , where 𝑍 ( 𝑗 ) ∼𝑖 .𝑖 .𝑑 N(0, 𝜌2)𝑛×𝑚

and is independent of𝑈 ( 𝑗 ) , (3)

while𝑈 ( 𝑗 ) ∈ R𝑛×𝑚 is arbitrary and can also depend on �̃� ( 𝑗+1) , . . . , �̃� (𝑑 ) .
Then there exists constants 𝑐𝑑 , 𝑐′𝑑 > 0 and an absolute constant 𝑐0 ≥ 1
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Figure 4: Left: The linear operator Ψ : R𝑛×𝑛 → R𝑅 interpreted
as a tensor consisting of a 𝑛 × 𝑛 array of 𝑅-dimensional vec-
tors. There are smoothed or random contractions applied
using matrices �̃� , �̃� ∈ R𝑛×𝑚 . Right: The operator Ψ(�̃� ⊗ �̃� ) :
R𝑚×𝑚 → R𝑅 interpreted as an 𝑚2 array of 𝑅-dimensional
vectors. Theorem 5.2 shows that under the conditions of the
theorem, with high probability the robust rank of this op-
erator is𝑚2 i.e, the least singular value of 𝑅 ×𝑚2 matrix is
inverse polynomial.

such that for𝑚 ≤ 𝑐𝑑𝛿𝑛, with probability at least 1−exp

(
−Ω𝑑,𝛿 (𝑛)

)
,

we have

𝜎𝑚𝑑

(
Ψ

(
�̃� (1) ⊗ · · · ⊗ �̃� (𝑑 ) ) ) ≥

𝑐′
𝑑
𝜌𝑑

𝑛𝑐0𝑑
. (4)

While Ψ is specified as a matrix of dimension 𝑅×𝑛𝑑 in Theorem 5.2,

one can alternately view Ψ as a (𝑑 + 1)-order tensor of dimensions

𝑅×𝑛×𝑛×· · ·×𝑛 as shown in Figure 4. Theorem 5.2 then gives a lower

bound for the multilinear rank (in fact, for its robust analog) under

smoothed modal contractions along the 𝑑 modes of dimension 𝑛

each.

In the above statements, one can also consider an arbitrary linear

operator Φ with 𝜎𝑅 (Φ) ≥ 1 and obtain the same consequence.

Applying Theorem 5.1 along with the block leave-one-out approach

(see Lemma A.2) we arrive at the following corollary.

Corollary 5.3. Suppose 𝑑, 𝑡 ∈ N and let 1 ≥ 𝛿1 > 𝛿2 > 0 be given.
Also let Φ : Sym𝑑 (R𝑛) → R𝐷 be an orthogonal projection of rank
𝑅 ≥ 𝛿1

(𝑛+𝑑−1
𝑑

)
. Let {𝑈 𝑗 }𝑡𝑗=1 ⊂ R𝑛×𝑚 be an arbitrary collection of

𝑛 ×𝑚 matrices, and for each 𝑗 , let �̃� 𝑗 be a random 𝜌-perturbation
of 𝑈 𝑗 . Then there exists a constant 𝑐𝑑 > 0 such that if 𝑡

(𝑚+𝑑−1
𝑑

)
≤

𝛿2
(𝑛+𝑑−1

𝑑

)
and 𝑚 ≤ 𝑐𝑑 (𝛿1 − 𝛿2)𝑛, then with probability at least

1 − exp

(
− Ω𝑑,𝛿1,𝛿2 (𝑛)

)
, we have the least singular value

𝜎
𝑡 (𝑚+𝑑−1

𝑑 )
(
Φ

[
�̃� ⊛𝑑
1

�̃� ⊛𝑑
2

. . . �̃� ⊛𝑑𝑡

] )
≥ 𝜌𝑑

√
𝑡𝑛𝑂 (𝑑 ) . (5)

C.1 Proof of Theorem 5.2
We will prove Theorem 5.2 for general 𝑑 by induction on 𝑑 . The

following crucial lemma considers a linear operator Ψ acting on

the space R𝑛1 ⊗ R𝑛2 , and shows that if Ψ has large rank Ω(𝑛1𝑛2),
then it has many “blocks” of large relative rank as described in

Section 2.3.

Lemma 5.4. Let Ψ ∈ R𝑅×(𝑛1𝑛2 ) be a projection matrix of rank
𝑅 = 𝛿𝑛1𝑛2 for some constant 𝛿 > 0, and let Ψ = [Ψ1 Ψ2 . . . Ψ𝑛1 ]
where the blocks Ψ𝑖 ∈ R𝑅×𝑛2 ∀𝑖 ∈ [𝑛1]. Then there exists constants
𝑐1, 𝑐2, 𝑐3 > 0 and a subset 𝑆1 ⊂ [𝑛1] with |𝑆1 | ≥ 𝑐1𝛿𝑛1 such that

∀𝑖 ∈ 𝑆1, 𝜎𝑐2𝛿𝑛2
(
Π⊥
𝑆1\{𝑖 }Ψ𝑖

)
≥ 1

(𝑛𝑘)𝑐3 , (6)

where Π⊥
𝑆
is the projection orthogonal to span

(
∪𝑖∈𝑆 colspan(Ψ𝑖 )

)
.

We prove this lemma in Section C.2 by restricting to randomly

chosen columns as described in the overview (Section 2.3). We now

proceed with the proof of Theorem 5.2 assuming the above lemma.

The following lemma will be important in the inductive proof of the

theorem. It reasons about the robust rank (also called multi-linear

rank) after the modal contraction by a smoothed matrix along a

specific mode. The lemma is proved in slightly more generality; we

will use it for the theorem with 𝜀 = 1.

Lemma 5.5 (Robust rank under random contractions). Suppose
𝜀 ∈ (0, 1] is a constant. For every constant 𝛾,𝐶 > 0, there is a constant
𝑐 ∈ (0, 1) such that the following holds for all 𝑠 = 2

𝑜 (𝑘 ) . Consider
matrices 𝐴1, 𝐴2, . . . , 𝐴𝑠 ∈ R𝑅×𝑘 , 𝐶1, . . . ,𝐶𝑠 ∈ R𝑅×𝑚 and ∀𝑗 ∈ [𝑠]
let Π⊥

− 𝑗 denote the projector orthogonal to the span of the column
spaces of {𝐴 𝑗 ′ : 𝑗 ′ ≠ 𝑗, 𝑗 ′ ∈ [𝑠]}. Suppose the following conditions
are satisfied:

∀𝑗 ∈ [𝑠], 𝜎𝜀𝑘 (Π⊥
− 𝑗𝐴 𝑗 ) ≥ 𝑘

−𝛾
(7)

and 𝜎1 (𝐴 𝑗 ), 𝜎1 (𝐶 𝑗 ) ≤ 𝑘𝐶 . For a random 𝜌-perturbed matrix �̃� ∈
R𝑘×𝑚 with𝑚 ≤ 𝑐𝜀𝑘 , we have with probability at least 1−exp(−Ω(𝜀𝑘))
that

if ∀𝑗 ∈ [𝑠], 𝑀 𝑗 = 𝐶 𝑗 +𝐴 𝑗�̃� , then 𝜎𝑠𝑚
(
𝑀1 | · · · | 𝑀𝑠

)
≥ 𝜌

2𝑘𝛾+1
√
𝑠
.

Proof. Let �̃� = 𝑈 + 𝑍 where 𝑍 ∼ 𝑁 (0, 𝜌2)𝑘×𝑚 is the random

perturbation. Denote 𝑀 = (𝑀1 | · · · | 𝑀𝑠 ). Recall Π⊥
− 𝑗∗ is the

projector orthogonal to the span of the column spaces of {𝐴 𝑗 : 𝑗 ≠
𝑗∗, 𝑗 ∈ [𝑠]}. We prove that with high probability, for any (test) unit

vector 𝛼 ∈ R𝑠 ·𝑚 , we have ∥𝑀𝛼 ∥2 is non-negligible. A standard

argument would consider a net over all potential unit vectors 𝛼 ∈
R𝑠𝑚 . However this approach fails here, since we cannot get high

enough concentration (of the form 𝑒−Ω (𝑠𝑚)
) that is required for this

argument. Instead, we argue that if there were such a test vector

𝛼 ∈ R𝑠 ·𝑚 , there exists a block 𝑗∗ ∈ [𝑠] where we observe a highly
unlikely event.

We will use the following simple claim that is proven using a stan-

dard net argument.

Claim C.1. In the above notation, given a (fixed) vector 𝑤 ∈ R𝑅 ,
and a random matrix 𝑍 ∼ 𝑁 (0, 𝜌2)𝑅×𝑘 with i.i.d entries, we have
that with probability at least 1 − exp(−Ω(𝑘)) that

∀𝑣 ∈ R𝑚 with ∥𝑣 ∥2 = 1 and ∀𝑗 ∈ [𝑠], ∥𝑤 +Π⊥
− 𝑗 (𝐴 𝑗𝑍 )𝑣 ∥2 ≥ 𝜌

2𝑘𝛾+1
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Figure 5: Left: The setting of 𝑑 = 2 with linear operator
Ψ : R𝑛×𝑛 → R𝑅 having slices Ψ1, . . . ,Ψ𝑛 ∈ R𝑅×𝑛 . The modal
contractions �̃� (1) , �̃� (2) ∈ R𝑛×𝑚 have not yet been applied.
Right: After modal contraction along 𝑈 (2) ∈ R𝑛×𝑚 , we get
𝑊 ∈ R𝑅×𝑛×𝑚 with lateral slices 𝑊1, . . . ,𝑊𝑛 . The subtensor
𝑊𝑆1 ∈ R𝑅×|𝑆1 |×𝑚 represents the slices obtained from the
“good” blocks 𝑆1 ⊂ [𝑛], and𝑊[𝑛]\𝑆1 ∈ R𝑅×| [𝑛]\𝑆1 |×𝑚 represents
the remaining slices. The randommodal contraction �̃� (1) can
also now be split into �̃� (1)

𝑆1
∈ R𝑆1×𝑚, �̃� (1)

[𝑛]\𝑆1 ∈ R[𝑛]\𝑆1×𝑚 . Let

𝑊 ( 𝑗 ) ∈ R𝑅×𝑛 denote the 𝑗th frontal slice for each 𝑗 ∈ [𝑚𝑑−1].
Then the final matrix slice obtained for each 𝑗 ∈ [𝑚𝑑−1] can
be written as𝑀 ( 𝑗 ) =𝑊 ( 𝑗 )

𝑆1
�̃�

(1)
𝑆1

+𝑊 ( 𝑗 )
[𝑛]\𝑆1�̃�

(1)
[𝑛]\𝑆1 , where the ran-

domness in the two summands is independent.

Proof of Claim. We first prove the claim using a net argument over

test vectors 𝑣 ∈ R𝑚 . Consider a fixed 𝑗 ∈ [𝑠]; we will do a union

bound over all 𝑗 ∈ [𝑠].

Let 𝑣 ∈ R𝑚 be a fixed unit vector. Let 𝐴′ = Π⊥
− 𝑗𝐴 𝑗 . Observe

that 𝑍𝑣 ∼ 𝑁 (0, 𝜌2𝐼 ) is a random Gaussian vector with i.i.d en-

tries each with mean 0 and variance 1. By assumption 𝜎𝜀𝑘 (𝐴′) =
𝜎𝜀𝑘 (Π⊥

− 𝑗𝐴 𝑗 ) ≥ 𝑘
−𝛾

. Let the SVDof𝐴′ = 𝐸diag(𝜇)𝐹⊤ =
∑𝑘
𝑖=1 𝜇𝑖𝑒𝑖 𝑓

⊤
𝑖

where 𝜇𝑖 ≥ 0 ∀𝑖 ∈ [𝑘] and 𝜇1 ≥ 𝜇2 ≥ · · · ≥ 𝜇𝜀𝑘 ≥ 𝑘−𝛾 .

𝐴′ (𝑍𝑣) = 𝐸diag(𝜇) (𝐹𝑍𝑣) = 𝐸diag(𝜇)𝜁 =

𝑘∑︁
𝑖=1

𝜁𝑖𝜇𝑖𝑒𝑖 ,

where 𝜁 ∼ 𝑁 (0, 𝐼 ) is a random Gaussian vector with i.i.d entries.

Moreover 𝜇𝑖 ≥ 𝑘−𝛾 for all 𝑖 ∈ [𝜀𝑘]. Hence ∀𝛿 ∈ (0, 1/2),

P
[
∥𝑤 + Π⊥

− 𝑗𝐴 𝑗𝑍𝑣 ∥ <
𝛿𝜌

𝑘𝛾

]
≤ P

[
∀𝑖 ∈ [𝜀𝑘], |⟨𝑤, 𝑒𝑖 ⟩ + ⟨𝑒𝑖 ,Π⊥

− 𝑗𝐴 𝑗𝑍𝑣⟩| <
𝛿𝜌

𝑘𝛾

]
=

𝜀𝑘∏
𝑖=1

P
[
|⟨𝑤, 𝑒𝑖 ⟩ + 𝜇𝑖𝜁𝑖 | <

𝛿𝜌

𝑘𝛾

]
≤ (𝑐0𝛿)𝜀𝑘 ,

for some absolute constant 𝑐0 > 0. The equality used the indepen-

dence of (𝜁𝑖 : 𝑖 ∈ [𝑘]), while the last inequality used that 𝜇𝑖 ≥ 𝑘−𝛾
for 𝑖 ≤ 𝜀𝑘 along with standard anti-concentration of a Gaussian r.v.

Set 𝜀′ B 𝛿/(4𝑘𝐶+1/2). Consider an 𝜀′-net N𝜀′ over unit vectors in
R𝑚 . By a union bound over N𝜀′ , we get

P
[
∀𝑗 ∈ [𝑠],∀𝑣 ∈ N𝜀 , ∥𝑤 + Π⊥

− 𝑗𝐴 𝑗𝑍𝑣 ∥ ≥ 𝛿𝜌

𝑘𝛾

]
≥ 1 − 𝑠 (𝑐𝛿)𝜀𝑘 |N𝜀′ |

≥ 1 − exp

(
− 𝜀𝑘 log

(
1

𝑐𝛿

)
+ log 𝑠 +𝑚 log(2/𝜀′)

)
≥ 1 − exp(−Ω(𝑘)),

by picking 𝛿 = 1/𝑘 , and𝑚 ≤ 𝑐𝜀𝑘 for an appropriately small constant

𝑐 > 0 (depending on 𝐶). Finally conditioned on the above event,

for any unit vector 𝑣 ∈ R𝑘 , we can consider the closest point 𝑣

in N𝜀′ and conclude that ∀𝑗 ∈ [𝑠], ∥Π⊥
− 𝑗𝐴 𝑗𝑍𝑣 ∥ ≥ ∥Π⊥

− 𝑗𝐴 𝑗𝑍𝑣 ∥ −
∥𝐴 𝑗 ∥∥𝑍 ∥∥𝑣 − 𝑣 ∥ ≤ 𝑂 (𝑘𝐶 ·

√
𝑘𝜌)𝜀′ ≥ 𝛿𝜌

2𝑘𝛾
.

Finishing the proof of Lemma 5.5 Let us condition on the event

that the conclusion of Claim C.1 holds; note that this holds with

probability at least 1 − exp(−Ω(𝜀𝑘)).

Suppose for contradiction there exists a vector 𝛼 ∈ R𝑠 ·𝑘 such that

∥𝑀𝛼 ∥2 <
𝜌

𝑘𝛾+1
√
𝑠
. The vector𝑀𝛼 ∈ R𝑅 is

𝑀𝛼 =
∑︁
𝑗∈[𝑠 ]

𝑀𝑗𝛼
( 𝑗 ) =

∑︁
𝑗∈[𝑠 ]

(
𝐶 𝑗 +𝐴 𝑗 (𝑈 + 𝑍 )

)
𝛼 ( 𝑗 )

(13)

=
∑︁
𝑗∈[𝑠 ]

(
𝐶 𝑗 +𝐴 𝑗𝑈

)
𝛼 ( 𝑗 ) +

∑︁
𝑗∈[𝑠 ]

𝐴 𝑗𝑍𝛼
( 𝑗 )

= 𝑏𝛼 +
∑︁
𝑗∈[𝑠 ]

𝐴 𝑗𝑍𝛼
( 𝑗 ) , (14)

where 𝑏𝛼 is a fixed vector in R𝑅 . We have for all 𝑗∗ ∈ [𝑠]
Π⊥
− 𝑗∗𝑀𝛼 = Π⊥

− 𝑗∗𝑏𝛼 +
∑︁
𝑗∈[𝑠 ]

Π⊥
− 𝑗∗𝐴 𝑗𝑍𝛼

( 𝑗 )

= Π⊥
− 𝑗∗𝑏𝛼 + Π⊥

− 𝑗∗𝐴 𝑗∗ (𝑍𝛼
( 𝑗∗ ) ), (15)

In the above, (15) holds since Π⊥
− 𝑗∗ is orthogonal to the column

spaces of all 𝑗 ≠ 𝑗∗ and 𝐴′ = Π⊥
− 𝑗∗𝐴 𝑗∗ .

Now consider any index 𝑗∗ ∈ [𝑠] such that ∥𝛼 ( 𝑗∗ ) ∥2 ≥ 1/
√
𝑠 (note∑𝑠

𝑗=1∥𝛼 ( 𝑗 ) ∥2
2
= 1). Now applying Claim C.1 with 𝑗 = 𝑗∗, 𝑣 =

𝛼 ( 𝑗∗ )/∥𝛼 ( 𝑗∗ ) ∥ and𝑤 = Π⊥
− 𝑗∗𝑏𝛼/∥𝛼

( 𝑗∗ ) ∥, we get that

∥𝑀𝛼 ∥2 ≥ ∥Π⊥
− 𝑗∗𝑀𝛼 ∥ ≥ 1

√
𝑠
· 𝜌

2𝑘𝛾+1
,

which contradicts the assumption. This concludes the proof.

□

Proof of Theorem 5.2. We now proceed by induction on 𝑑 . For

the proof it will be useful to think of 𝜌 as a sufficiently small inverse

polynomial (this is without loss of generality and suffers only a

poly(𝑛) extra factor in the bound).

The base case 𝑑 = 1 follows by simple random matrix arguments;

specifically, Lemma 5.5 applied with 𝑠 = 1, 𝑑 = 1 implies it.

For higher 𝑑 , we will apply the induction hypothesis for modal con-

tractions along the last 𝑑 − 1 modes using matrices �̃� (2) , . . . , �̃� (𝑑 )
,

and then finally apply modal contraction along �̃� (1)
.
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Set 𝑛1 = 𝑛, 𝑛2 = 𝑛𝑑−1. First applying Lemma 5.4 with Ψ, we
get a set of blocks {Ψ𝑖 : 𝑖 ∈ 𝑆1} with |𝑆1 | = Ω(𝛿𝑛1), satisfy-
ing (6). Define for each 𝑖 ∈ 𝑆1, V𝑖 B colspan(Ψ𝑖 ), and V−𝑖 B
span(∪𝑗∈𝑆1, 𝑗≠𝑖colspan(Ψ𝑖 )) and let Π⊥

−𝑖 be the projection matrix

for the subspace orthogonal to V−𝑖 .

In other words, suppose for each 𝑖 ∈ [𝑛] that𝑊𝑖 B Ψ𝑖
(
�̃� (2) ⊗

�̃� (3) ⊗ · · · ⊗ �̃� (𝑑 ) ) ∈ R𝑅×𝑚𝑑−1
. Then for absolute constants 𝑐, 𝑐′ >

0, 𝑐′′ > 0,

𝜎𝑐𝛿𝑛𝑑−1

(
Π⊥
−𝑖Ψ𝑖

)
≥ 𝑐′′

(𝑛𝑘)𝑐′
for all 𝑖 ∈ 𝑆1 .

By using the induction hypothesis with order (𝑑 − 1) with the

matrices {Π⊥
−𝑖Ψ𝑖 } along with a union bound over the 𝑛 blocks, for

appropriate constants 𝑐0 > 0 and 𝑐′
𝑑−1 > 0,

∀𝑖 ∈ 𝑆1, 𝜎𝑚𝑑−1

(
Π⊥
−𝑖𝑊𝑖

)
= 𝜎𝑚𝑑−1

(
Ψ𝑖

(
�̃� (2) ⊗ · · · ⊗ �̃� (𝑑 ) ) )

≥
𝑐′
𝑑−1𝜌

𝑑−1

𝑛𝑐0 (𝑑−1)
.

Let𝑊 ∈ R𝑅×𝑛×𝑚𝑑−1
be the tensor obtained by stacking thematrices

𝑊𝑖 ∈ R𝑅×𝑚
𝑑−1

as shown in the Figure 5. Let𝑊𝑆1 ∈ R𝑅×𝑆1×𝑚𝑑−1

denote the subtensor comprising just the slices 𝑖 ∈ 𝑆1, and let

𝑊[𝑛]\𝑆1 be the remaining portion. For each 𝑗 ∈ [𝑚𝑑−1], let𝑊 ( 𝑗 ) ∈
R𝑅×𝑛 be obtained from the slices along the third mode. We will use

𝑊
( 𝑗 )
𝑆1

,𝑊
( 𝑗 )
[𝑛]\𝑆1 to denote the portions of the slices𝑊 ( 𝑗 )

formed by

the columns 𝑆1 and [𝑛] \ 𝑆1 respectively. If𝑊 flat

𝑆1
∈ R𝑅×( |𝑆1 |𝑚𝑑−1 )

is the matrix obtained by flattening 𝑊𝑆1 appropriately, then by

Lemma A.2 on the block leave-one-out distance,

𝜎 |𝑆1 |𝑚𝑑−1

(
𝑊 flat

𝑆1

)
= 𝜎 |𝑆1 |𝑚𝑑−1

(
𝑊

(1)
𝑆1

| · · · |𝑊 (𝑚𝑑−1 )
𝑆1

)
≥

𝑐′
𝑑−1𝜌

𝑑−1

𝑛
𝑐0 (𝑑−1)+ 1

2

. (16)

The final matrix is obtained by concatenating the matrices𝑀 ( 𝑗 ) ∈
R𝑅×𝑚 for each 𝑗 ∈ [𝑚𝑑−1], where

𝑀 ( 𝑗 ) =𝑊 ( 𝑗 )�̃� (1) =𝑊 ( 𝑗 )
𝑆1

�̃�
(1)
𝑆1

+𝑊 ( 𝑗 )
[𝑛]\𝑆1�̃�

(1)
[𝑛]\𝑆1

=𝑊
( 𝑗 )
𝑆1

�̃�
(1)
𝑆1

+𝐶 ( 𝑗 ) , where 𝐶 ( 𝑗 ) B𝑊
( 𝑗 )
[𝑛]\𝑆1�̃�

(1)
[𝑛]\𝑆1 .

Consider any fixed 𝑗 ∈ [𝑚𝑑−1]. We will treat𝐶 ( 𝑗 )
as fixed matrices.

Note that the randomness in �̃�
(1)
𝑆1

is independent of the randomness

in �̃�
(1)
[𝑛]\𝑆1 . Nowwe can apply Lemma 5.5 with 𝑠 =𝑚𝑑−1,𝐴 𝑗 =𝑊

( 𝑗 )
𝑆1

and �̃� = �̃�
(1)
𝑆1

and 𝐶 𝑗 = 𝐶
( 𝑗 )

to conclude the inductive proof of

Theorem 5.2. □

C.2 Finding many blocks with large relative
rank

We note that while the statement of the lemma is quite intuitive, the

proof is non-trivial because we require that in any selected block,

there must be many vectors with a large component orthogonal to

the entire span of the other selected blocks. As a simple example, con-

sider setting 𝑛2 = 2𝑡 and Ψ1 = {𝑒1, 𝑒2, . . . , 𝑒𝑡 , 𝜀𝑒𝑡+1, 𝜀𝑒𝑡+2, . . . , 𝜀𝑒2𝑡 },

and Ψ2 = {𝜀𝑒1, 𝜀𝑒2, . . . , 𝜀𝑒𝑡 , 𝑒𝑡+1, 𝑒𝑡+2, . . . , 𝑒2𝑡 }. In this case, even if 𝜀

is tiny, we cannot choose both the blocks, because the span of the

vectors in Ψ2 contains all the vectors in Ψ1.

The proof will proceed by first identifying a set of roughly 𝑅 vectors

(spread across the blocks) that form a well conditioned matrix,

followed by randomly restricting to a subset of the blocks.

We start with the following lemma, which gives us the first step.

Lemma C.2. Suppose 𝐴 is an𝑚 × 𝑛 matrix such that 𝜎𝑘 (𝐴) ≥ 𝜃 .
Then there exists a submatrix 𝐴𝑆 with |𝑆 | = 𝑘 columns, such that
𝜎𝑘 (𝐴𝑆 ) ≥ 𝜃/

√
𝑛𝑘 .

Remark. The lemma is a robust version of the simple statement that

if 𝜎𝑘 (𝐴) > 0, then there exist 𝑘 linearly independent columns.

Proof. We start by noting that we can restrict to the case𝑚 = 𝑘 .

This is because we can project the columns of𝐴 onto the span of the

top 𝑘 singular vectors of𝐴 and pick the 𝑆 using the resulting matrix.

Formally, if Π is the (𝑘 ×𝑚) matrix that defines the projection, then

we work with Π𝐴. (By definition, 𝜎𝑘 (Π𝐴) = 𝜎𝑘 (𝐴) ≥ 𝜃 , so the

hypothesis of the lemma holds.) For the obtained set 𝑆 , it is easy

to see that the vectors before projection will satisfy, for any test

vector 𝛼 ,

∥
∑︁
𝑖

𝛼𝑖𝑣𝑖 ∥ ≥ ∥
∑︁
𝑖

𝛼𝑖Π𝑣𝑖 ∥.

Thus if we show a lower bound for 𝜎𝑘 (Π𝐴𝑆 ), the same bound holds

for 𝜎𝑘 (𝐴𝑆 ). So in what follows, assume that𝑚 = 𝑘 .

Next, we find an Auerbach basis [20] (also referred to as a Barycen-

tric spanner or a well-conditioned basis [6, 18]) for the columns

of 𝐴. Recall that this is a subset of the columns of 𝐴 defined by a

subset 𝑆 of indices such that |𝑆 | = 𝑘 , and for all 𝑖 ∈ [𝑛], 𝐴𝑖 can be

expressed as

∑
𝑗∈𝑆 𝛼 𝑗𝐴 𝑗 with |𝛼 𝑗 | ≤ 1.

We claim that for this choice of 𝑆 , we have a lower bound on 𝜎𝑘 (𝐴𝑆 ).
Suppose not; suppose ∥∑

𝑖∈𝑆 𝛼𝑖𝐴𝑖 ∥ < 𝜃/
√
𝑛𝑘 for some unit vector

𝛼 (whose non-zero entries are indexed by 𝑆). Since 𝛼 is a unit vector

with at most 𝑘 non-zeros, one of its coefficients, say 𝛼 𝑗 , must be

≥ 1/
√
𝑘 . Thus we have 𝐴 𝑗 = 𝑥 +𝑤 , for some 𝑥 ∈ span(𝐴𝑆\{ 𝑗 } ) and

∥𝑤 ∥ ≤ 𝜃/
√
𝑛.

Next, consider any column 𝐴ℓ for ℓ ∉ 𝑆 . From the above, we have

that 𝐴ℓ ’s projection orthogonal to the span of 𝐴𝑆\{ 𝑗 } is at most

𝜃/
√
𝑛 (because of the Auerbach basis property, and the fact that

𝐴 𝑗 is almost in the span of 𝐴𝑆\{ 𝑗 } ). This implies that the squared

rank-(𝑘 − 1) approximation error (in the Frobenius norm) of the

matrix 𝐴 is ≤ (𝑛 − 𝑘)𝜃2/𝑛 < 𝜃2, which contradicts the fact that

𝜎𝑘 (𝐴) ≥ 𝜃 . □

We can now complete the proof of Lemma 5.4.

Proof of Lemma 5.4. The outline of the argument is as follows:

(1) First find a subset 𝑀 of 𝑅 = 𝛿𝑛1𝑛2 columns of Ψ such that

𝜎𝑅 (𝑀) is large (using Lemma C.2).

(2) Randomly sample a subset 𝑇 ⊆ [𝑛1] of the blocks.
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(3) Discard any block 𝑗 ∈ 𝑇 that has fewer than 𝛿𝑛2/6 vectors

with a non-negligible component orthogonal to the span of

∪𝑟 ∈ (𝑇 \{ 𝑗 })Ψ𝑟 ; argue that there are Ω(𝛿𝑛1) blocks remaining.

The first step is a direct application of Lemma C.2; we thus obtain

𝑀 with 𝑅 = 𝛿𝑛1𝑛2 columns such that

𝜎𝑅 (𝑀) ≥ 1

𝑛1𝑛2
√
𝛿
. (17)

For convenience, we will denote the columns of𝑀 by 𝑣1, 𝑣2, . . . , 𝑣𝑅 .

Now for the second step of the outline: 𝑇 ⊆ [𝑛1] is selected by in-

cluding each block 𝑗 in𝑇 with probability equal to |𝑀∩Ψ𝑗 |/6𝑛2. I.e.,
the probability is proportional to the fraction of the “𝑀” columns

contained in a block. For convenience, we will write 𝛼 𝑗 = |𝑀 ∩
Ψ𝑗 |/𝑛2.

Step (3) of the outline is thus the bulk of the argument. We start by

introducing two random variables. First, for 𝑗 ∈ [𝑛1], define 𝑋 𝑗 to
be the indicator that is 1 if block 𝑗 is chosen in 𝑇 and 0 otherwise.

Thus by definition, P[𝑋 𝑗 = 1] = 𝛼 𝑗/6, and the 𝑋 𝑗 are independent

for different 𝑗 . Second, for 𝑖 ∈ [𝑅], if 𝑗 is the index of the block that

contains 𝑣𝑖 , we define 𝑌𝑖 to be 1 if the vector 𝑣𝑖 has a projection

of length ≥ 1

𝑅𝑛1𝑛2
√
𝛿
orthogonal to the span of all the columns in

∪𝑟 ∈𝑇 \{ 𝑗 }Ψ𝑟 and 0 otherwise.

Now, note that a block 𝑗 “survives” step (3) of the outline above if (a)

𝑗 ∈ 𝑇 to start with, and (b)

∑
𝑣𝑖 ∈Ψ𝑗

𝑌𝑖 ≥ 𝛿𝑛2/6. [This is a sufficient

condition for survival, not an equivalence.] Thus, if 𝑄 𝑗 is a random

variable indicating if block 𝑗 survives, we can write

𝑄 𝑗 ≥
𝑋 𝑗

(∑
𝑣𝑖 ∈Ψ𝑗

𝑌𝑖 − 𝛿𝑛2
6

)
+

𝑛2𝛼 𝑗
. (18)

Here, for a random variable𝑍 , the notation (𝑍 )+ denotesmax{𝑍, 0}.
We will use the RHS expression to give a positive lower bound on

E[∑𝑗∈[𝑛1 ] 𝑄 𝑗 ]. Note that this will complete the proof of the lemma,

because we are only interested in an existential statement.

To this end, the key observation is that for any 𝑣𝑖 ∈ Ψ𝑗 , the random
variable 𝑌𝑖 is independent of 𝑋 𝑗 . This is because by definition, 𝑌𝑖
indicates if 𝑣𝑖 had a large enough component orthogonal to the

span of the other chosen blocks (irrespective of whether block 𝑗 is

chosen or not). Thus, since E[𝑋 𝑗 ] = 𝛼 𝑗/6, we have that

E


𝑋 𝑗

(∑
𝑣𝑖 ∈Ψ𝑗

𝑌𝑖 − 𝛿𝑛2
6

)
+

𝑛2𝛼 𝑗


=

1

6𝑛2
E

©«
∑︁
𝑣𝑖 ∈Ψ𝑗

𝑌𝑖 −
𝛿𝑛2

6

ª®¬+
 ≥ 1

6𝑛2

©«E[
∑︁
𝑣𝑖 ∈Ψ𝑗

𝑌𝑖 ] −
𝛿𝑛2

6

ª®¬ .
Thus, we have∑︁

𝑗∈[𝑛1 ]
𝑄 𝑗 ≥

1

6𝑛2

©«E
[ ∑︁
𝑖∈[𝑅 ]

𝑌𝑖
]
− 𝛿𝑛1𝑛2

6

ª®¬ . (19)

So it complete the proof, it suffices to prove that E[∑𝑖 𝑌𝑖 ] is suf-
ficiently large. We do this by introducing an auxiliary random

variable 𝑍𝑖 . For any 𝑖 ∈ [𝑅], define 𝑍𝑖 to be the random variable

that is 1 if 𝑣𝑖 has a projection of length ≥ 1

𝑅𝑛1𝑛2
√
𝛿
orthogonal to

the span of the vectors in all the chosen blocks, ∪𝑟 ∈𝑇Ψ𝑟 .

Thus by definition, the inequality 𝑍𝑖 ≤ 𝑌𝑖 always holds, and 𝑍𝑖
will be zero if 𝑋 𝑗 = 1 (where Ψ𝑗 is the block that contains 𝑣𝑖 ). We

will prove that in fact, E[∑𝑖 𝑍𝑖 ] is large. Observe that by the law of

conditional expectation,

E[
∑︁
𝑖

𝑍𝑖 ] =
∑︁
𝑇

P[𝑇 ] · E[
∑︁
𝑖

𝑍𝑖 |𝑇 ] .

Indeed, the last term is deterministic conditioned on 𝑇 (so it is

simply the number of 𝑖 for which 𝑍𝑖 is 1 for the chosen𝑇 ). We split

the sum into two, depending on |𝑇 |.

E

[∑︁
𝑖

𝑍𝑖

]
=

∑︁
𝑇 : |𝑇 |>2𝑛1𝛿/3

P[𝑇 ] · E
[∑︁
𝑖

𝑍𝑖 |𝑇
]

+
∑︁

𝑇 : |𝑇 | ≤2𝑛1𝛿/3
P[𝑇 ] · E

[∑︁
𝑖

𝑍𝑖 |𝑇
]
.

We will simply ignore the first sum, as our goal is to obtain a lower

bound. To show that this is good enough, we first observe that

E[|𝑇 |] =
∑︁
𝑗∈[𝑛1 ]

𝑋 𝑗 =
∑︁
𝑗

𝛼 𝑗

6

≤ 𝛿𝑛1

6

.

Thus by Markov’s inequality, P[|𝑇 | ≤ 2𝑛1𝛿/3] ≥ 3/4. Let us thus
condition on one such 𝑇 .

Claim. For any 𝑇 with |𝑇 | ≤ 2𝛿𝑛1/3, we have
∑
𝑖∈[𝑅 ] 𝑍𝑖 ≥ 𝛿𝑛1𝑛2

3
.

Informally, 𝑣𝑖 are vectors that are all “well conditioned”, and thus

many of them must have a component orthogonal to any subspace

of dimension < 𝑅/2.

This can bemade formal as follows: letS be the subspace span (∪𝑟 ∈𝑇Ψ𝑟 ).
Clearly, its dimension is ≤ |𝑇 |𝑛2 ≤ 𝛿2𝑛1𝑛2/3 = 2𝑅/3. Now from

our definition of {𝑣𝑖 }, the matrix𝑀 whose columns are the 𝑣𝑖 has

𝜎𝑅 (𝑀) bounded as in (17). Thus, if Π⊥
S is the matrix that projects

every vector to the space S⊥
, we have, by the Min-Max characteri-

zation of eigenvalues,

𝜎𝑅−dim(S) (Π⊥
S𝑀) ≥ 𝜎𝑅 (𝑀) ≥ 1

𝑛1𝑛2
√
𝛿
.

Thus, at least 𝑅 − dim(S) ≥ 𝛿𝑛1𝑛2/2 columns of Π⊥
S𝑀 must have

length ≥ 1

𝑅𝑛1𝑛2
√
𝛿
.
9

This will let us conclude that E[∑𝑖 𝑍𝑖 ] ≥ 𝛿𝑛1𝑛2/3, thus completing

the proof of the claim.

Next, we use the claim together with our observations above to

conclude that

E

[∑︁
𝑖

𝑍𝑖

]
≥ 𝛿𝑛1𝑛2

3

· P [|𝑇 | ≤ 2𝑛1𝛿/3] ≥
𝛿𝑛1𝑛2

3

· 3
4

=
𝛿𝑛1𝑛2

4

.

Plugging this into (19), we obtain

∑
𝑗∈[𝑛1 ] 𝑄 𝑗 ≥ Ω(𝑛1), thus com-

pleting the proof. □
9
Here we are using the simple observation that if 𝜎𝑘 (𝑋 ) ≥ 𝛿 for a matrix 𝑋 with

𝐶 columns, then at least 𝑘 of the columns must be ≥ 𝛿/𝐶 . This holds because if not,
we can project to the space orthogonal to at most (𝑘 − 1) columns and have every

column being of length < 𝛿/𝐶 , which means the max singular value of the matrix

with these projected columns is < 𝛿 ) ; this contradicts the assumption on 𝜎𝑘 (𝑋 ) ≥ 𝛿 .
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C.3 From Symmetric to Non-Symmetric
Products

Recall 𝑈 ∈ R𝑛×𝑚 and �̃� = 𝑈 + 𝑍 where 𝑈 = (𝑢𝑖 : 𝑖 ∈ [𝑚]) is
an arbitrary matrix and 𝑍 ∈ R𝑛×𝑚 is a random matrix with i.i.d.

entries drawn from N(0, 𝜌2). In what follows, Φ : Sym(R𝑛𝑑 ) →
R𝑟 denotes an operator acting on the symmetric space, and let

Ψ ∈ R𝑟×𝑛𝑑 denote the natural matrix representation of Φ such that

Φ(𝑥⊗𝑑 ) = Ψ𝑥⊗𝑑 , and where where every row of Ψ corresponds to

a symmetric matrix.

Additionally, we define Permavg ∈ R𝑚𝑑×(𝑚+𝑑−1
𝑑 )

to be the unique

matrixwith the property that for any collection ofmatrices {𝑉 (𝑖 ) }𝑑
𝑖=1

⊂
R𝑛×𝑚 , we have that

(
⊗𝑑
𝑖=1
𝑉 (𝑖 )

)
Permavg ∈ R𝑛𝑑×(

𝑚+𝑑−1
𝑑 )

is the

matrix with columns indexed by tuples (𝑖1, 𝑖2, . . . , 𝑖𝑑 ) with 1 ≤
𝑖1 ≤ 𝑖2 ≤ · · · ≤ 𝑖𝑑 ≤ 𝑚, where the column corresponding to

(𝑖1, 𝑖2, . . . , 𝑖𝑑 ) is given by
1

|𝑆𝑑 |

(∑
𝜋∈𝑆𝑑 ⊗𝑑

𝑗=1
𝑉

( 𝑗 )
𝑖𝜋 ( 𝑗 )

)
. Here 𝑆𝑑 denotes

the permutation group on 𝑑 indices and𝑉
( 𝑗 )
𝑖𝜋 ( 𝑗 )

is the 𝑖𝜋 ( 𝑗 ) th column

of 𝑉 ( 𝑗 )
.

The matrix Permavg has two important properties that we note.

First, for any matrix𝑈 , we have that (𝑈 ⊗𝑑 )Permavg is the matrix

with columns Sym𝑑 (�̃�𝑖1 ⊗ �̃�𝑖2 ⊗ · · · ⊗ 𝑢𝑖𝑑 ) where 1 ≤ 𝑖1 ≤ 𝑖2 · · · ≤
𝑖𝑑 ≤ 𝑚. That is (𝑈 ⊗𝑑 )Permavg = 𝑈 ⊛𝑑 . It follows that

Ψ
(
𝑈 ⊗𝑑

)
Permavg

=

(
Φ
(
Sym𝑑 �̃�𝑖1 ⊗ · · · ⊗ �̃�𝑖𝑑

)
: 1 ≤ 𝑖1 ≤ · · · ≤ 𝑖𝑑 ≤ 𝑚

)
.

Second, since Ψ is determined by ts action on Sym(R⊗𝑑 ), we obtain
that for any collection of matrices {𝑉 (𝑖 ) }𝑑

𝑖=1
⊂ R𝑛×𝑚 and any

permutation 𝜋 ∈ 𝑆𝑑 , one has

Ψ
(
⊗𝑑𝑖=1𝑉

(𝑖 )
)
Permavg = Ψ

(
⊗𝑑𝑖=1𝑉

(𝜋 (𝑖 ) )
)
Permavg . (20)

The following lemma is useful in our reduction from nonsymmetric

products to symmetric products.

LemmaC.3. Given𝑑 ∈ N, for each 𝑖 = 1, . . . , 𝑑 , let𝑍 𝑗 ∼ N(0, 𝜌2
𝑗
)𝑛×𝑚

and set 𝜌2 = 𝜌2
1
+ · · · + 𝜌2

𝑑
so that 𝑍 := 𝑍1 + · · · +𝑍𝑑 ∼ N(0, 𝜌2)𝑛×𝑚 .

Also let �̃� = 𝑈 +𝑍 ∈ R𝑛×𝑚 be a 𝜌-smoothed matrix. For each ℓ ∈ [𝑑],
set �̃� (ℓ ) = �̃� − 𝑍1 − · · · − 𝑍ℓ . Then one has

Ψ
(
�̃� ⊗𝑑

)
Permavg = Ψ

(
⊗𝑑𝑗=1 (�̃�

( 𝑗 ) + (𝑑 − 𝑗 + 1)𝑍 𝑗 )
)
Permavg +Ψ𝐸

where the error matrix 𝐸 is a random matrix that satisfies ∥𝐸∥𝐹 ≤
𝑐𝑑 (1+∥𝑈 ∥𝑑−2)𝜌2 (𝑛𝑚)

𝑑
2 ) with probability at least 1−exp(−Ω(𝑛𝑚)),

for some constant 𝑐𝑑 > 0 that only depends on 𝑑 .

Proof. The proof follows an induction argument that carefully

leverages symmetry (equation (20)), and groups together terms in

a way that decouples the randomness.

We give the proof by induction on 𝑘 . In particular, we will show

that for 𝑘 ≤ 𝑑 , we have

Ψ
(
�̃� ⊗𝑑

)
Permavg

=Ψ
(
⊗𝑘𝑗=1 (�̃�

( 𝑗 ) + (𝑑 − 𝑗 + 1)𝑍 𝑗 ) ⊗ (�̃� (𝑘 ) )⊗𝑑−𝑘
)
Permavg + Ψ

©«
𝑘∑︁
𝑗=1

𝐸 𝑗
ª®¬

where for each 𝑗 we have ∥𝐸 𝑗 ∥𝐹 ≤ 𝑐′
𝑑
𝑂 ((1 + ∥𝑈 ∥𝑑−2)𝜌2

𝑗
(𝑛𝑚)

𝑑
2 )

with probability at least 1 − exp(−Ω(𝑛𝑚)) for some constant 𝑐′
𝑑

that depends only on 𝑑 . Setting �̃� (0)
:= �̃� , the statement trivially

holds in the base case of 𝑘 = 0. We now suppose the result is true

for 𝑘 = ℓ and prove it true for ℓ + 1. Set

𝑊ℓ := ⊗ℓ𝑗=1 (�̃�
( 𝑗 ) + (𝑑 − 𝑗 + 1)𝑍 𝑗 ).

Then using our induction hypothesis with the identity �̃� (ℓ ) =

�̃� (ℓ+1) + 𝑍ℓ+1, we obtain

Ψ
(
�̃� ⊗𝑑

)
Permavg = Ψ

(
𝑊ℓ ⊗ (�̃� (ℓ ) )⊗𝑑−ℓ

)
Permavg + Ψ

©«
ℓ∑︁
𝑗=1

𝐸 𝑗
ª®¬

= Ψ
(
𝑊ℓ ⊗ (�̃� (ℓ+1) + 𝑍ℓ+1)⊗𝑑−ℓ

)
Permavg

+ Ψ
©«
ℓ∑︁
𝑗=1

𝐸 𝑗
ª®¬

Applying equation (20) and expanding with the binomial theorem

gives

Ψ

(
𝑊ℓ ⊗

(
�̃� (ℓ+1) + 𝑍ℓ+1)

)⊗𝑑−ℓ )
Permavg

=Ψ
(
𝑊ℓ ⊗

( 𝑑−ℓ∑︁
𝑗=0

(
𝑑 − ℓ
𝑗

) (
𝑍
⊗ 𝑗
ℓ+1

)
⊗

(
(�̃� (ℓ+1) )⊗𝑑−ℓ− 𝑗

) ))
Permavg

=Ψ

(
𝑊ℓ ⊗

( (
�̃� (ℓ+1)

)⊗𝑑−ℓ
+ (𝑑 − ℓ) (𝑍ℓ+1) ⊗

(
�̃� (ℓ )

)⊗𝑑−ℓ+1
+ 𝐸′ℓ+1

))
Permavg

=Ψ
(
𝑊ℓ ⊗

(
�̃� (ℓ+1) + (𝑑 − ℓ)𝑍ℓ+1

))
⊗

(
(�̃� (ℓ+1) )⊗𝑑−ℓ−1

)
Permavg

+ Ψ(𝑊ℓ ⊗ 𝐸′ℓ+1)Permavg

Here

𝐸′ℓ+1 :=
𝑑−ℓ∑︁
𝑗=2

(
𝑑 − ℓ
𝑗

)
𝑍
⊗ 𝑗
ℓ+1 ⊗ (𝑉 (ℓ+1) )⊗𝑑− 𝑗 .

Setting 𝐸ℓ+1 := (𝑊ℓ ⊗ 𝐸′
ℓ+1)Permavg, we obtain that ∥𝐸ℓ+1∥𝐹 ≤

𝑐′
𝑑
𝑂 ((1+∥𝑈 ∥𝑑−2)𝜌2

𝑗
(𝑛𝑚)

𝑑
2 )with probability at least 1−exp(−Ω(𝑛𝑚)).

From here, observing that

𝑊ℓ+1 =𝑊ℓ ⊗
(
�̃� (ℓ+1) + (𝑑 − ℓ)𝑍ℓ+1

)
completes the proof by induction.

□

Lemma C.4 (Symmetric to Non-symmetric Products). Suppose
𝑑 ∈ Z+ be a positive integer. Suppose Φ : Sym(R𝑛𝑑 ) → R𝑟 with
∥Φ∥ ≤ 1. For every 𝜌1, . . . , 𝜌𝑑 > 0 with

∑𝑑
𝑗=1 𝜌

2

𝑗
= 𝜌2 and 𝛿 ∈ (0, 1)
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the following holds when �̃� = 𝑈 +𝑍 is drawn as described above with
the entries of 𝑍 being drawn i.i.d from N(0, 𝜌2):
∀𝑡 ≥ 0,

P
[
𝜎(𝑚+𝑑−1

𝑑 )
(
Φ
(
Sym𝑑�̃�𝑖1 ⊗ · · · ⊗ �̃�𝑖𝑑

)
: 1 ≤ 𝑖1 ≤ · · · ≤ 𝑖𝑑 ≤ 𝑚

)
≤ 𝑡

]
≤ P

[
𝜎𝑚𝑑

(
Ψ

(
⊗𝑑𝑗=1 (�̃�

( 𝑗 ) + (𝑑 − 𝑗 + 1)𝑍 𝑗 )
) )

≤
√
𝑑! · 𝑡 + ∥𝐸∥ log(1/𝛿)

]
+ 𝛿. (21)

Here 𝑉 (ℓ ) = �̃� − 𝑍1 − · · · − 𝑍ℓ and for each ℓ ∈ [𝑑] and 𝑍ℓ is
a random matrix with i.i.d entries drawn from N(0, 𝜌2

ℓ
) and 𝐸 is

the error matrix appearing in Lemma C.3 which has norm ∥𝐸∥ =

𝑂 ((1 + ∥𝑈 ∥𝑑−2)𝜌2 (𝑛 +𝑚)
𝑑
2 ).

Proof. First observe that

Φ
(
Sym𝑑�̃�𝑖1⊗· · ·⊗�̃�𝑖𝑑

)
: 1 ≤ 𝑖1 ≤ · · · ≤ 𝑖𝑑 ≤ 𝑚

)
= Ψ

(
�̃� ⊗𝑑

)
Permavg

Using Lemma C.3 shows then shows that

Ψ
(
�̃� ⊗𝑑

)
Permavg = Ψ

(
⊗𝑑𝑗=1 (�̃�

( 𝑗 ) + (𝑑 − 𝑗 + 1)𝑍 𝑗 )
)
Permavg+Ψ𝐸.

Using the fact that Permavg has columns with disjoint support each

with ℓ2 norm at least
1√
𝑑!

shows that the matrix Permavg has full

column rank with all singular values in [ 1√
𝑑!
, 1]. Combining this

with the above equality gives

𝜎(𝑚+𝑑−1
𝑑 )

(
Ψ

(
�̃� ⊗𝑑

)
Permavg

)
≥ 1

√
𝑑!
𝜎𝑚𝑑

(
Ψ

(
⊗𝑑𝑗=1 (�̃�

( 𝑗−1) + 𝑗𝑍 𝑗 )
))

− ∥Ψ∥∥𝐸∥,

from which the desired singular value lower bound follows. □

C.4 Proof of Corollary 5.3
Corollary 5.3. Suppose 𝑑, 𝑡 ∈ N and let 1 ≥ 𝛿1 > 𝛿2 > 0 be given.
Also let Φ : Sym𝑑 (R𝑛) → R𝐷 be an orthogonal projection of rank
𝑅 ≥ 𝛿1

(𝑛+𝑑−1
𝑑

)
. Let {𝑈 𝑗 }𝑡𝑗=1 ⊂ R𝑛×𝑚 be an arbitrary collection of

𝑛 ×𝑚 matrices, and for each 𝑗 , let �̃� 𝑗 be a random 𝜌-perturbation
of 𝑈 𝑗 . Then there exists a constant 𝑐𝑑 > 0 such that if 𝑡

(𝑚+𝑑−1
𝑑

)
≤

𝛿2
(𝑛+𝑑−1

𝑑

)
and 𝑚 ≤ 𝑐𝑑 (𝛿1 − 𝛿2)𝑛, then with probability at least

1 − exp

(
− Ω𝑑,𝛿1,𝛿2 (𝑛)

)
, we have the least singular value

𝜎
𝑡 (𝑚+𝑑−1

𝑑 )
(
Φ

[
�̃� ⊛𝑑
1

�̃� ⊛𝑑
2

. . . �̃� ⊛𝑑𝑡

] )
≥ 𝜌𝑑

√
𝑡𝑛𝑂 (𝑑 ) . (5)

Proof. For each 𝑗 = 1, . . . , 𝑡 , let Π⊥
− 𝑗 denote the orthogonal projec-

tion onto

Ran(Φ) ∩ Ran

( [
�̃� ⊛𝑑
1

. . . �̃� ⊛𝑑
𝑗−1 �̃� ⊛𝑑

𝑗+1 . . . 𝑈𝑡
⊛𝑑

] )⊥
We first lower bound the least singular value of Π− 𝑗 (�̃� ⊛𝑑𝑗 ) . Observe
that from our assumptions, the rank of Π− 𝑗 is at least

𝛿1

(
𝑛 + 𝑑 − 1

𝑑

)
+(1−𝛿2)

(
𝑛 + 𝑑 − 1

𝑑

)
−
(
𝑛 + 𝑑 − 1

𝑑

)
= (𝛿1−𝛿2)

(
𝑛 + 𝑑 − 1

𝑑

)
.

Taking 𝑐𝑑 to be the constant from Theorem 5.1, we can then ap-

ply Theorem 5.1 to conclude that with probability at least 1 −
exp(−Ω𝑑,𝛿1,𝛿2 (𝑛)) we have

𝜎(𝑚+𝑑−1
𝑑 ) (Π− 𝑗�̃� ⊗𝑑

𝑗 ) ≥ 𝜌𝑑

𝑛𝑂 (𝑑 ) .

The result now follows by applying the block leave one out bound

of Lemma A.2. □

D APPLICATION: CERTIFYING QUANTUM
ENTANGLEMENT AND LINEAR SECTIONS
OF VARIETIES

We consider the setting in the work of Johnston, Lovitz and Vija-

yaraghavan [19], where we are given a conic algebraic variety X
and a linear subspace U. The subspace U is specified by a basis

while the variety X is specified by a set of polynomials that cut it

out. Conic varieties (or equivalently, projective varieties) are closed

under scalar multiplication and are cut out by homogeneous poly-

nomials, which can further be chosen to all have the same degree

𝑑 . In [19], they give a polynomial time algorithm that certifies that

the intersection U ∩ X is trivial i.e., U ∩ X = {0} for a generic
subspaceU up to a certain dimension𝑚. In this section, we prove a

robust analogue of this statement in the smoothed analysis setting.

In the smoothed setting, the subspace Ũ is spanned by 𝜌-perturbed

vectors �̃�1, . . . , �̃�𝑚 , with ∀𝑖 ∈ [𝑚], �̃�𝑖 = 𝑢𝑖 + 𝑧𝑖 where ∥𝑢𝑖 ∥ ≤ 1 and

𝑧𝑖 ∼𝑖 .𝑖 .𝑑 𝑁 (0, 𝜌2)𝑛 . The subspace Ũ is specified in terms of any

orthonormal basis 𝑢1, . . . , 𝑢𝑚 . The variety is specified by a set of

degree-𝑑 homogenous polynomials that cut out the variety X. Our

goal is to certify that every element of 𝑣 ∈ X (with ∥𝑣 ∥ = 1) is far

from the subspace Ũ.

Theorem D.1. Let X ⊆ R𝑛 be an irreducible variety cut out by 𝑝 =

𝛿
(𝑛+𝑑−1

𝑑

)
linearly independent homogeneous degree-𝑑 polynomials

𝑓1, . . . , 𝑓𝑝 ∈ R[𝑥1, . . . , 𝑥𝑛]𝑑 , for constants 𝑑 ≥ 2 and 𝛿 ∈ (0, 1). There
exists a constant 𝑐𝑑 > 0 (that only depends on 𝑑) such that for a
randomly 𝜌-perturbed subspace Ũ ⊆ R𝑛 of dimension𝑚 ≤ 𝑐𝑑 · 𝛿𝑛
as described above, we have that with probability 1 − exp(−Ω(𝑛)),
the algorithm in Figure 6 on input 𝑓1, . . . , 𝑓𝑝 and a basis 𝑢1, . . . , 𝑢𝑚
for Ũ certifies in polynomial time (i.e., (𝑛/𝜌)𝑂 (𝑑 ) ) that

∀𝑣 ∈ X with ∥𝑣 ∥ = 1, dist(𝑣, Ũ) B inf

𝑢∈Ũ
∥𝑢 − 𝑣 ∥2 ≥ 𝜌𝑑

𝑛𝑂 (𝑑 ) . (22)

This theorem gives a robust analog of the genericity statement

in [19] that certifies trivial intersection with a generic subspace

(Theorem 2 with 𝑠 = 0). We remark that [19] also considers a

version of the problem where there are also some generic elements

of X planted in the subspace Ũ. While it is natural to think of

generic elements of X (using the induced Zariski topology on X), it

is not clear how to define an appropriate smoothed analysis model

that captures the planted setting. This is an interesting research

direction that is beyond the scope of this work.

We use the algorithm of Johnston, Lovitz and Vijayaraghavan [19],

which is based on Hilbert’s projective Nullstellensatz certificates.

Recall thatX is a conic variety that is cut out by a finite set of homo-

geneous degree-𝑑 polynomials 𝑓1, . . . , 𝑓𝑝 ∈ R[𝑥1, . . . , 𝑥𝑛]𝑑 . Viewing
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𝑓1, . . . , 𝑓𝑝 ∈ (R𝑛)⊗𝑑 as vectors in the dual space, we consider the

map

Φ𝑑X : (R𝑛)⊗𝑑 → R𝑝 (23)

𝑣 ↦→ (𝑓1 (Sym𝑑𝑣), . . . , 𝑓𝑝 (Sym𝑑𝑣))⊤ . (24)

Note that for rank-1 𝑣 , i.e. 𝑣 = 𝑥⊗𝑑 for some 𝑥 ∈ R𝑛 , Φ𝑑X = 0
exactly when 𝑥 lies in the variety X. By picking an orthonormal

basis for the vector space spanned by the dual vectors 𝑓1, . . . , 𝑓𝑝 , we

can assume without loss of generality that the operator Φ𝑑X is an

orthogonal projection matrix with rank 𝑝 . Moreover we can assume

that the given basis 𝑢1, . . . , 𝑢𝑚 for Ũ is an orthonormal basis.

Input: A basis {𝑢1, . . . , 𝑢𝑚} for a linear subspace Ũ ⊆ R𝑛 , and a

collection of homogeneous degree-𝑑 polynomials 𝑓1, . . . , 𝑓𝑝 that cut

out a conic variety X ⊆ R𝑛 .
(1) Compute the least singular value of the following matrix

𝜂 = 𝜎(𝑚+𝑑−1
𝑑 )

(
Φ𝑑X (𝑢𝑖1 ⊗ · · · ⊗ 𝑢𝑖𝑑 ) : 1 ≤ 𝑖1 ≤ · · · ≤ 𝑖𝑑 ≤ 𝑚

)
. (25)

(2) If 𝜂 > 0, output: “Ũ is at least 𝜂-far from X.”

(3) Otherwise, output: “Don’t know.”

Figure 6: Algorithm certifying that Ũ is far from X.

Proof. From standard randommatrix theory (or see e.g., Claim C.1)

with probability 1− exp(−Ω(𝑛)) we have for some constant 𝑐1 > 0,

𝜎𝑚 (�̃� ) ≥ 𝑐𝜌/(𝑛𝑐1 ) and 𝜎1 (�̃� ) ≤ 𝑂 (
√
𝑛(1+ 𝜌)). Conditioned on the

above event, every unit vector 𝑢 ∈ Ũ can be expressed as

𝑢 =

𝑚∑︁
𝑖=1

𝛼𝑖�̃�𝑖 , for some 𝛼 ∈ R𝑚

where

Ω(1 + 𝜌)
√
𝑛

≤ ∥𝛼 ∥2 ≤ 𝑂
(
𝑛𝑐1/𝜌

)
. (26)

Moreover, fromTheorem 5.1, with probability at least 1−exp(−Ω(𝑛))
we have for some 𝑐𝑑 > 0 (that is constant for constant 𝑑) that

𝜎(𝑚+𝑑−1
𝑑 )

(
Φ𝑑X 𝑈

⊛𝑑
)
≥ 𝑐𝑑𝜌

𝑑

𝑛𝑂 (𝑑 ) . (27)

We condition on all the above high probability events (about the

least singular values) that hold with probability 1 − exp(−Ω(𝑛)).

Consider any vector 𝑣 ∈ X ⊂ R𝑛 such that ∥𝑣 ∥ = 1. Let 𝑢∗ ∈ Ũ be

the closest vector to 𝑣 in the subspace Ũ. On the one hand, from

(26) applied with 𝑢∗

Φ𝑑X ((𝑢∗)⊗𝑑 ) =
𝑚∑︁

𝑖1,𝑖2 ...,𝑖𝑑=1

(𝛼𝑖1 . . . 𝛼𝑖𝑑 ) · Φ𝑑X
(
�̃�𝑖1 ⊗ · · · ⊗ �̃�𝑖𝑑

)
=

∑︁
1≤𝑖1≤𝑖2≤ ...,𝑖𝑑 ≤𝑚

𝛽𝑖1,𝑖2,...,𝑖𝑑 · Φ𝑑X
(
�̃�𝑖1 ⊗ · · · ⊗ �̃�𝑖𝑑

)
,

where 𝛽𝑖1,...,𝑖𝑑 = 𝑐𝑖1,...,𝑖𝑑𝛼𝑖1 . . . 𝛼𝑖𝑑 and 𝑐𝑖1,...,𝑖𝑑 is a constant coeffi-

cient in [1, 𝑑!].10 Also 1 ≤ ∥𝛽 ∥ ≤
√
𝑑! · ∥𝛼 ∥2. Hence, from (27)Φ𝑑X ((𝑢∗)⊗𝑑 )


2

=

 ∑︁
1≤𝑖1≤𝑖2≤ ...,𝑖𝑑 ≤𝑚

𝛽𝑖1,𝑖2,...,𝑖𝑑Φ
𝑑
X

(
�̃�𝑖1 ⊗ · · · ⊗ �̃�𝑖𝑑

)
2

≥ 𝑐𝑑𝜌
𝑑

𝑛𝑂 (𝑑 ) · ∥𝛽 ∥2 ≥ 𝑐𝑑𝜌
𝑑

𝑛𝑂 (𝑑 ) .

On the other hand, we haveΦ𝑑X (𝑣⊗𝑑 ) = 0 since 𝑣 ∈ X. As ∥Φ𝑑X ∥ ≤ 1

by assumption, we get the following sequence of inequalities

∥𝑣 − 𝑢∗∥ ≥ 1

𝑑

𝑣⊗𝑑 − (𝑢∗)⊗𝑑
 ≥ 1

𝑑

Φ𝑑X𝑣⊗𝑑 − Φ𝑑X (𝑢∗)⊗𝑑
 ≥ 𝑐𝑑𝜌

𝑑

𝑛𝑂 (𝑑 ) .

This proves the theorem. □

D.1 Certifying quantum entanglement
We can instantiate the above theorem with specific choices of the

variety X to get algorithms that certify that a smoothed subspace

is robustly entangled i.e., it is far from any non-entangled state,

for different notions of entanglement. In what follows, we restrict

to the real domain for all of our statements and proofs. However,

quantum states are defined over the complex domain, and we do

not handle the complex domain in this version of the paper.

We start with the bipartite setting of dimension 𝑛1 × 𝑛2, which is

captured by matrices R𝑛1×𝑛2 . The set of separable states is captured
by the variety of rank-1 matrices:

X1 = {𝑀 ∈ R𝑛1×𝑛2 : rank(𝑀) ≤ 1}. (28)

A pure state 𝑣 that is non-separable i.e., 𝑣 ∉ X1 is said to be entangled.
For any 𝜀 > 0 we say that a subspace U ⊂ R𝑛1×𝑛2 is said to be

𝜀-robustly entangled if every unit vector in X1 is at least 𝜀 far from

the subspace U i.e.,

(𝜀-robust entanglement) dist(U,X1) = inf

𝑣∈X1:∥𝑣 ∥2=1,
𝑢∈U

∥𝑣 − 𝑢∥2 ≥ 𝜀.

(29)

More generally, the determinantal variety X𝑟 corresponds to states

that have Schmidt rank at most 𝑟 where

X𝑟 = {𝑀 ∈ R𝑛1×𝑛2 : rank(𝑀) ≤ 𝑟 }.
(𝜀-robust 𝑟 -entanglement) dist(U,X𝑟 ) = inf

𝑣∈X𝑟 :∥𝑣 ∥2=1,
𝑢∈U

∥𝑣 − 𝑢∥2 ≥ 𝜀.

(30)

captures the 𝜀-robustly 𝑟 -entanglement of a subspace, for an 𝜀 > 0.

Such subspaces are only close to highly entangled states. Entangled

subspaces corresponds to the setting when 𝑟 = 1. The variety X𝑟
is cut out by 𝑝 =

( 𝑛1
𝑟+1

) ( 𝑛2
𝑟+1

)
linearly independent homogenous

polynomials of degree 𝑟 + 1;
11

see [19]. The following corollary

then follows immediately from Theorem D.1.

Corollary D.2. Let 𝑛1, 𝑛2 be positive integers, let 𝑟 < min{𝑛1, 𝑛2}
be a positive integer. There exists constants 𝑐𝑟 , 𝑐′𝑟 > 0 (that only
depends on 𝑟 ), an absolute constant 𝑐 > 0 and an algorithm that
given a randomly 𝜌-perturbed subspace Ũ ⊆ R𝑛1𝑛2 of dimension
𝑚 ≤ 𝑐𝑟 ·𝑛1𝑛2, runs in (𝑛1𝑛2/𝜌)𝑂 (𝑟 ) time and certifies with probability
10
More precisely, 𝑐𝑖

1
,...,𝑖𝑑

is the number of entries in the tensor/dual form that corre-

spond to the relevant monomial in the polynomial. Thus, 𝑐𝑖
1
,...,𝑖𝑑

= 𝑡1!𝑡2! . . . 𝑡ℓ !where

ℓ is the number of distinct indices among 𝑖1, . . . , 𝑖𝑑 , and 𝑡1, . . . , 𝑡ℓ are the frequencies

of these ℓ distinct indices.
11
corresponding to all the determinants of the (𝑟 + 1) × (𝑟 + 1) submatrices being 0
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at least 1 − exp(−Ω(𝑛1𝑛2)) that Ũ is 𝜂-robustly 𝑟 -entangled for
𝜂 = 𝑐′𝑟 𝜌

𝑟 /(𝑛1𝑛2)𝑐𝑟 i.e.,

dist(Ũ,X𝑟 ) ≥
𝑐′𝑟 𝜌

𝑟+1

(𝑛1𝑛2)𝑐𝑟
. (31)

Note that when 𝑟 = 1, we get Corollary 1.6 about robustly certifying

entanglement of smoothed subspaces. This is the robust general-

ization of Corollary 28 in [19] which certifies that Ũ ∩ X𝑟 = {0}
for a generic subspace Ũ (this can be seen as a special case when

𝜂 → 0). Our result gives a way of certifying a lower bound on the

distance of a subspace from the set of rank-1matrices for smoothed

subspaces. This certification problem is closely related to the best

separable state problem [17] which also relates this question to

several other important questions in quantum information theory

and polynomial optimization.

Comparison to Barak, Kothari and Steurer [8]. Barak, Kothari and
Steurer [8] give an algorithm for an 𝜀-promise version of the entan-

glement certification problem, where given an arbitrary subspace

U ∈ R𝑛×𝑛 , the goal is distinguish between

• YES: There is a unit vector 𝑣 ∈ X𝑟 that also lies inU.

• NO: For all unit vectors 𝑣 ∈ X𝑟 , ∥𝑣 − 𝑢∥ ≥ 𝜀 for all 𝑢 ∈ U.

The algorithm in [8] gives a 2
𝑂 (

√
𝑛)/𝜀

time algorithm to solve the

above promise problem. Harrow and Montanaro [17] presented

evidence through conditional hardness results that polynomial

time algorithms may not exist even for constant 𝜀 > 0 in the

worst-case, i.e., for arbitrary subspaces. In contrast, our algorithm

gives polynomial time algorithms for smoothed subspaces up to

dimension 𝑐 · 𝑛2 (for some constant 𝑐 > 0) even for 𝜀 that is inverse

polynomially small.

We can also use Theorem D.1 with other choices of X to get robust

analogs of the other certification results in [19]. These include

multi-partite entanglement notions like complete entanglement

and genuine entanglement which have been studied in quantum

information. They follow by applying Theorem D.1 along with the

corresponding claims in [19]. We state one such result for complete

entanglement. Denote the set of separable order 𝑑-tensors

X𝑠𝑒𝑝 = {𝑣1 ⊗ 𝑣2 ⊗ · · · ⊗ 𝑣𝑑 : 𝑣1 ∈ R𝑛1 , . . . 𝑣𝑑 ∈ R𝑛𝑑 }. (32)

A 𝜀-robust completely entangled subspace U is one which is 𝜀-far

from every unit vector in X𝑠𝑒𝑝 . Again by using the fact that X𝑠𝑒𝑝 is

cut out by 𝑝 =
(𝑛1𝑛2 ...𝑛𝑑+1

2

)
−

(𝑛1+1
2

)
· · · · ·

(𝑛𝑑+1
2

)
linearly independent

homogenous polynomials of degree 2 (see Section 2.3 of [19]) we

get the following corollary.

Corollary D.3. Let 𝑛1, 𝑛2, . . . , 𝑛𝑑 be positive integers. There exists
constants 𝑐𝑑 , 𝑐′𝑑 > 0 (that only depends on 𝑑), an absolute constant
𝑐 > 0 and an algorithm that given a randomly 𝜌-perturbed sub-
space Ũ ⊆ R𝑛1𝑛2 ...𝑛𝑑 of dimension 𝑚 ≤ 𝑐𝑑 · 𝑛1𝑛2 . . . 𝑛𝑑 , runs
in poly(𝑛1𝑛2 . . . 𝑛𝑑/𝜌) time and certifies with probability at least
1 − exp(−Ω(𝑛1 . . . 𝑛𝑑 )) that Ũ is 𝜂-robustly completely entangled
for 𝜂 = 𝑐′

𝑑
𝜌2/(𝑛1𝑛2 · 𝑛𝑑 )𝑐 i.e.,

dist(Ũ,X𝑟 ) ≥
𝑐′
𝑑
𝜌2

(𝑛1𝑛2 · 𝑛𝑑 )𝑐
. (33)

E APPLICATION: DECOMPOSING OF SUMS OF
POWERS OF POLYNOMIALS

E.1 Overview of Bafna, Hsieh, Kothari and
Xu [7]

One application of our techniques is to extend the results of Bafna,

Hsieh, Kothari, and Xu [7] (which in turn build on [12]) to the

smoothed analysis setting. In [7] they consider the problem of de-
composing power-sum polynomials. In the most fundamental setting

they consider 𝑛-variate polynomials of the form

𝑝 (x) =
∑︁
𝑡≤𝑚

𝑎𝑡 (x)3 + 𝑒 (x),

where x = [𝑥1, . . . , 𝑥𝑛], each 𝑎𝑡 (x) is a homogeneous quadratic

polynomial, and 𝑒 (x) is a polynomial of small norm.
12

The goal is

to recover the underlying 𝑎𝑖 (x)s from 𝑝 (x). [7] give an algorithm

that is able to recover these components when there are up to𝑚 ∼
𝑂 (𝑛) components, while withstanding noise of inverse polynomial

magnitude, when each of the components 𝑎𝑖 (x) is drawn randomly
from a mean-0 distribution.

A natural setting for this problem is one in which each 𝑎𝑖 (x) is
perturbed, rather than fully random. In this setting, [7] are only

able to show that their algorithm can withstand noise of inverse

exponential magnitude. Our contribution is to provide a new anal-

ysis of the random matrices that arise in their algorithm, and thus

give a smoothed analysis guarantee for the algorithm of [7] that is

robust to noise of inverse polynomial magnitude.

In this section, we provide an overview of their algorithm and

highlight the three main matrices that arise. First, we rephrase the

question about polynomials as a question about tensors. That is,

we identify each homogeneous quadratic polynomial 𝑎𝑡 (x) with
a symmetric coefficient matrix 𝐴𝑡 such that 𝑎𝑡 (x) = x⊤𝐴𝑡x. Then,
one way to represent 𝑝 (x) is as a symmetric order-6 coefficient

tensor 𝑃sym defined by

vec(𝑃sym) = Sym
6

(
vec

( ∑︁
𝑡≤𝑚

𝐴⊗3
𝑡

))
,

where Sym
6
is a linear operator that performs a 6-way symmetriza-

tion operation.
13

Since we are given the input in the form of a

polynomial, we only have access to this symmetrized form of the

tensor.

12
[7] also consider a more general setting where 𝑝 (x) =

∑
𝑡≤𝑚 𝑎𝑡 (x)3𝐷 + 𝑒 (x) ,

where each 𝑎𝑡 (x) is a homogeneous polynomial of degree 𝐾 , that is then taken to the

3𝐷th power for some integer 𝐷 ≥ 1. That is, the basic case we present above is their

result for 𝐾 = 2, 𝐷 = 1. We focus on this case because the techniques for this setting

already form the basis of their algorithms for the other settings, and our goal is to give

a proof-of-concept for the kind of applications that we expect for our techniques.

13
In terms of polynomials, Sym

6
essentially combines terms that are the same due

to commutativity, i.e. 𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6 = 𝑥2𝑥3𝑥4𝑥5𝑥6𝑥1 . Note that, even though the

underlying 𝐴𝑡 s are (2-way) symmetric matrices, and each 𝐴⊗3
𝑡 is taking a 3-way

symmetric product,𝐴⊗3
𝑡 is not necessarily 6-way symmetric. One way to think of this

is that the 2-way symmetry of the 𝐴𝑡 s allows the variables of 𝑥1𝑥2 · 𝑥3𝑥4 · 𝑥5𝑥6 to
commute with their pairwise partners, and the 3-way symmetry of the tensor product

allows the pairs to commute with each other. However, this does not allow 𝑥2 and 𝑥3
to individually commute with each other, for example. Thus, the Sym

6
operator can

change the structure of 𝑃 significantly.
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The main observation that the [7] algorithm is built on is that, if

we could recover the asymmetric version of the tensor

𝑃asym =
∑︁
𝑡≤𝑚

𝐴⊗3
𝑡 ,

then we could use standard tensor decomposition techniques to

recover the underlying 𝐴𝑡 s. In general, recovering an asymmetric

tensor from a symmetric tensor is impossible, as there is a whole

subspace of asymmetric tensors that could be mapped to the same

symmetric tensor. However, if the 𝐴⊗3
𝑡 all belonged to a known

generic low-dimensional subspace, then the symmetrization opera-

tor would actually be invertible over this subspace.

In [7] they focus on recovering a basis for the subspace spanned

by the (vectorized) 𝐴𝑡 s. If we recover such a basis, represented

by the columns of a matrix 𝐶 = [𝐶1, . . . ,𝐶𝑚], then we have that

(the vectorized form of) 𝑃asym lives in the column span of 𝐶⊛3,

where ⊛ denotes the symmetrized Kronecker product. We can then

invert the symmetrization operator and retrieve 𝑃asym, as long as

the following claim holds.

Proposition E.1 (Symmetrization invertible over Kronecker basis).
Given 𝐶 ∈ R𝑛2×𝑚 representing a basis for a subspace of 𝜌-perturbed
symmetric matrices, with𝑚 ≤ 𝑐𝑛2 for some absolute constant 𝑐 ∈
(0, 1), Sym

6
𝐶⊛3 is robustly invertible w.h.p. That is, with probability

at least 1 − exp(−Ω(𝑛)),

𝜎min

(
Sym

6
𝐶⊛3

)
≥ poly

(
𝜌,

1

𝑚𝑛

)
.

Proposition E.1 follows from Theorem 5.1. First, we can consider

𝐶 = 𝑄𝐴where𝑄 is a basis changematrix (which is well-conditioned

w.h.p), and𝐴 is the matrix of vectorized𝐴𝑡 s. Then, we are interested

in Sym
6
𝐶⊛3 = Sym

6
𝑄⊗3𝐴⊛3 . The rank of Sym

6
is

(𝑛+5
6

)
is only

a constant factor less than the dimension of the total dimension

of the tensored space (
(𝑛+1
2

)
)3. Thus this statement follows from

Theorem 5.1, considering the linear operator Sym
6
𝑅⊗3 applied to

symmetric lifts of the 𝜌-perturbed 𝐴𝑡 s. .

To recover the subspace of the 𝐴𝑡 s, [7] use the partial derivatives

of 𝑝 (x). Specifically, the form of the second partial derivatives are

𝜕2

𝜕𝑥𝑖 𝜕𝑥 𝑗
𝑝 (x) = 𝜕2

𝜕𝑥𝑖 𝜕𝑥 𝑗

∑︁
𝑡≤𝑚

𝑎𝑡 (x)3 =
∑︁
𝑡≤𝑚

𝑎𝑡 (x)𝑞𝑡,𝑖, 𝑗 (x),

for some homogeneous quadratic polynomials 𝑞𝑡,𝑖, 𝑗 (x). Now, we
have a space U spanned by these polynomial combinations of the

𝑎𝑡 (x), and we would like to recover the underlying quadratic 𝑎𝑡 (x)s
from this space.

U is related to the space V , which spans all quartic multiples of

the 𝑎𝑡 (x). That is,
V = {𝑎𝑡 (x)𝑞(x) : 𝑡 ≤ 𝑚 and 𝑞(x) is a quadratic polynomial}.

Given V , [7] show a way to recover the span of the underlying

𝑎𝑡 (x). So first, we would like to find V starting from U. By defi-

nition, we have thatU ⊆ V . However, it is not true thatU = V .

This can be observed by dimension-counting: there are only

(𝑛+1
2

)
partial derivatives, which cannot span the space of multiples which

has dimension𝑚
(𝑛+1
2

)
for generic 𝑎𝑡 (x).

The [7] algorithm gets around this by projecting U to a smaller

dimensional space. In particular, they show that by projectingU
onto ℓ ∈ 𝑂 (

√
𝑛) variables, they recover the span of all quartic mul-

tiples of the 𝑎𝑡 (x) restricted to these ℓ variables, i.e. the projected

V . We already know that the projectedU must be contained in the

projectedV . Thus to show equality, we only need to show that the

rank of the projectedU matches the rank of the projectedV . [7]

do this by showing that a certain system of equations that recovers

an element of the projectedV from a corresponding element of the

projectedU is solvable. This ends up boiling down to the following

proposition.

Proposition E.2 (Projected U same dimension as projected V).
Fix parameters𝑚,𝑛, ℓ ∈ N where and let �̃�1, . . . , �̃�𝑚 be a collection
of 𝜌-smoothed 𝑛 × 𝑛 matrices which satisfy max𝑡 ∥𝑈𝑡 ∥𝐹 ≤ 𝐿. Let
𝑀 ∈ R𝑛×ℓ be a column selection matrix and set 𝑆𝑡 = �̃�𝑡𝑀 for each
𝑡 = 1, . . . ,𝑚. Also let 𝑉 ∈ R𝑛2×𝑚(ℓ+1

2
)+𝑚 be the block matrix

𝑉 :=
[
𝑆1 ⊛ 𝑆1 . . . 𝑆𝑚 ⊛ 𝑆𝑚 vec(�̃�1) . . . vec(�̃�𝑚)

]
.

Finally, assume the parameter 𝑟 := 𝑛2 − 𝑛ℓ −𝑚
(ℓ+1
2

)
−𝑚 + 1 satisfies

𝑟 ≥ 𝛿𝑛2 for some 𝛿 ∈ (0, 1). Then there exists constants 𝑐, 𝑐′ > 0

(potentially depending on 𝛿 and 𝐿) such that with probability at least
1 − exp(−Ω𝛿 (𝑛)) we have

𝜎
𝑚(ℓ+1

2
)+𝑚 (𝑉 ) ≥ 𝑐′𝜌4

𝑛𝑐
.

Now, we shift our view to the case where we have V , the space

of all quartic multiples of 𝑎𝑡 (x).14 [7] consider an equation of the

form ∑︁
𝑡≤𝑚

𝑎𝑡 (x)𝑞𝑡 (x) = 0, (34)

where the 𝑎𝑡 (x) are generic, and the 𝑞𝑡 (x) are variables. They note

that since generic polynomials are irreducible, the only solutions

to this system have a certain structure. In particular, the space of

solutions are spanned by solutions of the form

for 𝑖 ≠ 𝑗 : 𝑞𝑖 (x) = 𝑎 𝑗 (x),
𝑞 𝑗 (x) = −𝑎𝑖 (x),
𝑞𝑘 (x) = 0 ∀𝑘 ≠ 𝑖, 𝑗 . (35)

and the dimension of the solution space is

(𝑚
2

)
. Note that solutions

of this form always exist, even when the 𝑎𝑡 (x) are not irreducible.
A key observation of [7] is that when 𝑎𝑡 (x) are irreducible, these
are the only solutions. Now consider∑︁

𝑡≤𝑚
𝑎𝑡 (x)𝑞𝑡 (x) = 𝑎0 (x)𝑞0 (x), (36)

where 𝑎0 (x) is a fresh generic polynomial chosen by our algorithm.

The space of polynomials that have the form of the LHS of (36)

is precisely V . Once we choose an 𝑎0 (x), the algorithm can also

construct the space of all quartic multiples of 𝑎0 (x), which we de-

noteV0. Now, consider all solutions to (36) where 𝑞0 (x) is nonzero.
14
In reality, we have access to the space of quartic multiples of the projected 𝑎𝑡 (x) .

However, we can repeat this step for various choices of the projection, and recover

the 𝑎𝑡 (x) restricted to different coordinates. For simplicity of notation, we will still

refer to the dimension of the (projected) polynomial as 𝑛.
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By the characterization of solutions in (35), we know that if it is

nonzero, 𝑞0 (x) must live in the span of the 𝑎𝑡 (x). Thus, we have
that

(V ∩V0)/𝑎0 (x) = span{𝑎𝑡 (x) : 𝑡 ≤ 𝑚}.
To go from a generic guarantee to a smoothed guarantee, we must

make the characterization (35) of the solution space of this equa-

tion robust. Thus, rather than only requiring the 𝑎𝑡 (x) to be irre-
ducible, we require the stronger condition that they are perturbed

(smoothed). To formalize this, once again we represent our polyno-

mials as symmetric tensors. Denote the coefficient matrix of 𝑎𝑡 (x)
be𝐴𝑡 , and the coefficient matrix of 𝑞𝑡 (x) be𝑄𝑡 . Then, we can write

(34) as

Sym
4
vec

(∑︁
𝑡≤𝑚

𝐴𝑡 ⊗ 𝑄𝑡

)
= 0.

If we combine our 𝑄𝑡 s into one large vector, with the appropriate

rearranging of indices
15
, we can write this as

Sym
4

(
𝐼(𝑛+1

2
) ⊗ 𝐴

)
q = 0,

where 𝐴 is the matrix such that column 𝑖 is (the vectorized) 𝐴𝑡 , and

q is the appropriate vectorization of the 𝑄𝑡 s. Recall that we want

to show that the dimension of the space of solutions q is exactly(𝑚
2

)
. Thus we can write the robust condition as following. In what

follows 𝑁2 B
(𝑛+1
2

)
is the dimension of the space of homogenous

quadratic polynomials over 𝑛 variables.

Proposition E.3 (Not too many solutions to polynomial equation

system). The space of solutions to the above polynomial equation
system has rank at most

(𝑚
2

)
in a robust sense. That is, let 𝐴 ∈

R𝑁2×𝑚 be made up of perturbed symmetric (when viewed as matrices)
columns. Then there exists constants 𝑐, 𝑐′, 𝑐′′ > 0 such that when
𝑚 ≤ 𝑐𝑁2, with probability at least 1 − exp(−Ω(𝑛))

𝜎𝑚𝑁2−(𝑚
2
)
(
Sym

4

(
𝐼𝑁2×𝑁2

⊗ 𝐴
) )

≥ 𝑐′′min{𝜌, 1}2

𝑛𝑐
′ ,

where ⊗ denotes the Kronecker product and 𝑁2 =
(𝑛+1
2

)
.

In [7] they prove analogues of propositions E.1, E.2, and E.3, for the

case where the underlying matrices are fully random (mean-0), and

they are able to show that these propositions hold with inverse-

polynomial failure probability. Our framework allows us to prove

these propositions for perturbed matrices, and show that the failure

probability is exponentially small. These improvements allow us to

conclude that the algorithm of [7] provides a smoothed analysis

guarantee. We omit the analysis for general values of 𝐾, 𝐷 in this

version of the paper.

E.2 Least singular value bounds for
Proposition E.2

Proposition E.2 (Projected U same dimension as projected V).
Fix parameters𝑚,𝑛, ℓ ∈ N where and let �̃�1, . . . , �̃�𝑚 be a collection
of 𝜌-smoothed 𝑛 × 𝑛 matrices which satisfy max𝑡 ∥𝑈𝑡 ∥𝐹 ≤ 𝐿. Let
15
Think of𝑄 = [𝑄1 𝑄2 . . . 𝑄𝑚 ], where the𝑄𝑖 s are vectorized into columns. Then

we vectorize𝑄 in row-major order, rather than column major order.

𝑀 ∈ R𝑛×ℓ be a column selection matrix and set 𝑆𝑡 = �̃�𝑡𝑀 for each
𝑡 = 1, . . . ,𝑚. Also let 𝑉 ∈ R𝑛2×𝑚(ℓ+1

2
)+𝑚 be the block matrix

𝑉 :=
[
𝑆1 ⊛ 𝑆1 . . . 𝑆𝑚 ⊛ 𝑆𝑚 vec(�̃�1) . . . vec(�̃�𝑚)

]
.

Finally, assume the parameter 𝑟 := 𝑛2 − 𝑛ℓ −𝑚
(ℓ+1
2

)
−𝑚 + 1 satisfies

𝑟 ≥ 𝛿𝑛2 for some 𝛿 ∈ (0, 1). Then there exists constants 𝑐, 𝑐′ > 0

(potentially depending on 𝛿 and 𝐿) such that with probability at least
1 − exp(−Ω𝛿 (𝑛)) we have

𝜎
𝑚(ℓ+1

2
)+𝑚 (𝑉 ) ≥ 𝑐′𝜌4

𝑛𝑐
.

Proof. Without loss of generality assume that 𝑆𝑡 is the first ℓ

columns of �̃�𝑡 . Also, we have by standard concentration bounds,

∥�̃�𝑡 ∥𝐹 ≤ 𝐿 + 𝜌 · poly(𝑛) with probability at least 1 − exp(−Ω(𝑛)).
We condition on the success event for the rest of the proof, and

assume without loss of generality that the upper bound 𝐿 already

includes the additive term 𝜌poly(𝑛).

We first argue that each column of the form vec(�̃�𝑡 ) has a large
component that is orthogonal to the remaining columns of 𝑉 . To

this end, set

𝑉𝑡 :=
[
𝑆 �̃� (−𝑡 )

]
where

𝑆 =
[
𝑆1 ⊛ 𝑆1 . . . 𝑆𝑚 ⊛ 𝑆𝑚

]
and

�̃� (−𝑡 ) =
[
vec(�̃�1) . . . vec(�̃�𝑡−1) vec(�̃�𝑡+1) . . . vec(�̃�𝑚)

]
.

We can restrict to considering only the last 𝑛2 − 𝑛ℓ entries of each
column of this matrix. By assumption, each 𝑆𝑡 is made up the first ℓ

columns of �̃�𝑡 , so the smoothing in the last𝑛2−𝑛ℓ entries of vec(�̃�𝑡 )
is independent from the smoothing in the last 𝑛2 −𝑛ℓ entries of the
columns of 𝑉𝑡 .

Now, let𝑄 : R𝑛
2 → R𝑛2−𝑛ℓ be the matrix that restricts onto the last

𝑛2 − 𝑛ℓ entries of a vector and let Π⊥
𝑅𝑉𝑡

be the projection onto the

orthogonal complement of the range of 𝑄𝑉𝑡 . Note that the matrix

𝑄𝑉𝑡 ∈ R𝑛
2−𝑛ℓ×𝑚(ℓ+1

2
)+𝑚−1

has rank at most𝑚
(ℓ+1
2

)
+𝑚−1, so using

Lemma A.1 we have

P[∥Π⊥
𝑄𝑉𝑡

𝑄vec(�̃�𝑡 )∥ ≥ 𝜀] ≥ 1 −
(
𝑐′′𝜀
𝜌

)𝑟
,

where 𝑟 = 𝑛2 − 𝑛ℓ −𝑚
(ℓ+1
2

)
−𝑚 + 1 and 𝑐′′ > 0 is an absolute

constant. The probability that the above holds for all 𝑡 = 1, . . . ,𝑚 is

then at least

1 −𝑚
(
𝑐′′𝜀
𝜌

)𝑟
.

Now suppose that𝜎min (𝑉 ) < 𝜀. Then theremust exist some test unit

vector 𝛼 ∈ R𝑚(ℓ+1
2
)+𝑚

such that ∥𝑉𝛼 ∥ < 𝜀.Write 𝛼 = 𝛼 (1) ⊕ 𝛼 (2)

where 𝛼1 ∈ R𝑚(ℓ+1
2
)
and 𝛼2 ∈ R𝑚 . Intuitively, 𝛼 (1)

contains the

entries of 𝛼 that are coefficients of columns of𝑉 which are from the

matrices 𝑆𝑡 ⊛ 𝑆𝑡 while 𝛼
(2)

contains the coefficients of the columns

of 𝑉 of the form vec(�̃�𝑡 ).
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Figure 7: In this illustration, 𝑁2 =
(𝑛+1
2

)
is the dimension

of the space of homogeneous quadratic polynomials. The
picture shows the space corresponding to the symmetric lift
(R𝑁2 )⊛2 � Sym(R𝑁2×𝑁2 ) being expressed as V ⊕ V⊥, where
V = (A ⊛ A) ⊕ (A ⊛ A⊥) as defined in (37). Sym

2→4
denotes

the orthogonal projector onto the space of fully symmetric
tensors in (R𝑛)⊗4. Lemma E.4 shows that ker(Sym

2→4
) ∩ V =

{0} w.h.p. Note that Sym
2→4

may not be a projection matrix
when restricted toV.

We consider two cases. In the first case suppose that ∥𝛼 (2) ∥ ≤
√
𝜀

2

√
𝑚𝐿

.

In this case we upper bound the probability that ∥𝑉𝛼 ∥ ≤
√
𝜀, which

in turn upper bounds the probability that ∥𝑉𝛼 ∥ ≤ 𝜀. We have

∥𝑉𝛼 ∥ =
 [
𝑆1 ⊛ 𝑆1 . . . 𝑆𝑚 ⊛ 𝑆𝑚

]
𝛼 (1)

+
[
vec(�̃�1) . . . vec(�̃�𝑚)

]
𝛼 (2)


≥

[𝑆1 ⊛ 𝑆1 . . . 𝑆𝑚 ⊛ 𝑆𝑚
]
𝛼 (1)

 − √
𝑚𝐿∥𝛼 (2) ∥ ≥

√
𝜀

2

.

This would imply that

𝜎min

( [
𝑆1 ⊛ 𝑆1 . . . 𝑆𝑚 ⊛ 𝑆𝑚

] )
< 𝜀/4.

Taking 𝜀 =
𝑐′ min{1,𝜌4 }

𝑛𝑐 as in the statement of the proposition, we

can use Corollary 5.3 to conclude that the probability that such an

𝛼 exists is at most exp

(
− Ω𝑚 (𝑛)

)
.

In the second case, we have that ∥𝛼 (2) ∥ > 𝜀

2

√
𝑚𝐿

. Therefore, 𝛼 (2)

must have some component 𝛼
(2)
𝑗

with magnitude at least |𝛼 (2)
𝑗

| ≥
√
𝜀

2𝑚𝐿
. It follows that

∥Π⊥
𝑄𝑉𝑗

𝑄vec(�̃� 𝑗 )∥∥𝛼 (2)
𝑗

∥ = ∥Π⊥
𝑄𝑉𝑗

𝑄𝑉𝛼 ∥ ≤ ∥𝑉𝛼 ∥ < 𝜀.

Here the first equality follows from the fact that the only nonzero

column of Π⊥
𝑄𝑉𝑗

𝑄𝑉 is Π⊥
𝑄𝑉𝑗

𝑄vec(�̃� 𝑗 ) which implies Π⊥
𝑄𝑉𝑗

𝑄𝑉𝛼 =

Π⊥
𝑄𝑉𝑗

𝑄vec(�̃� 𝑗 )𝛼 (2)
𝑗

. From this we obtain

∥Π⊥
𝑄𝑉𝑗

𝑄vec(�̃� 𝑗 )∥ < 2𝑚𝐿
√
𝜀.

Using the discussion above, the probability that there exists some

𝑗 ∈ [𝑚] for which this inequality holds is at most𝑚

(
𝑐′′𝑚𝐿

√
𝜀

𝜌

)𝑟
.

Taking 𝜀 =
𝑐′ min{1,𝜌4 }

𝑛𝑐 as in the statement of the proposition and

recalling that 𝑟 ≥ 𝛿𝑛2, this can be written as𝑚
(
𝑐′′𝑚𝐿

√
𝜀

𝜌

)𝑟
= exp

(
−

Ω𝑚,𝛿 (𝑛)
)

Combining these two cases, we see that the probability that there

exists a unit vector 𝛼 such that ∥𝑉𝛼 ∥ ≤ 𝑐′ min{1,𝜌4 }
𝑛𝑐 is bounded

above by

exp

(
− Ω𝛿,𝑚 (𝑛)

)
+ exp

(
− Ω𝑚 (𝑛)

)
= exp

(
− Ω𝛿,𝑚 (𝑛)

)
.

which completes the proof.

□

E.3 Bounding the solutions for system of
equations: Proof of Proposition E.3

Recall that𝑁2 =
(𝑛+1
2

)
is the dimension of the space of all symmetric

homogeneous polynomials of degree 2 in 𝑛 variables. Let Sym
2→4

:

(R𝑛)⊛2 ⊗ (R𝑛)⊛2 → (R𝑛)⊛4 be the orthogonal projector onto the

fully symmetric space over 4th-order tensors. Note that if 𝑣1, 𝑣2 ∈
(R𝑛)⊛2 � R𝑁2

, we have that Sym
2→4

(𝑣1 ⊗ 𝑣2) = Sym
2→4

(𝑣2 ⊗
𝑣1) = 1

2
Sym

2→4
(𝑣1 ⊗ 𝑣2 + 𝑣2 ⊗ 𝑣1). (Note that there are other

symmetries that are also captured by Sym
2→4

.)

In the smoothed setting 𝐴1, . . . , 𝐴𝑚 ∈ R𝑁2 � (R𝑛)⊛2 are randomly

𝜌-perturbed and represent the polynomials 𝑎1 (𝑥), . . . , 𝑎𝑚 (𝑥), and
letA B span({𝐴𝑖 : 𝑖 ∈ [𝑚]}). With high probability, the𝐴𝑖 are lin-

early independent, in which case we can let 𝐹𝑚+1, . . . , 𝐹𝑁2
∈ R𝑁2

be

a (random) orthonormal basis forA⊥
. Together𝐴1, . . . , 𝐴𝑚, 𝐹𝑚+1, . . . , 𝐹𝑁2

form a basis for R𝑁2
. Consider the spaceV ⊂ (R𝑁2 )⊛2 given by

V B span

( {
𝐴𝑖 ⊗ 𝐴 𝑗 +𝐴 𝑗 ⊗ 𝐴𝑖 : 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑚

}⋃ {
𝐴𝑖 ⊗ 𝐹 𝑗 + 𝐹 𝑗 ⊗ 𝐴𝑖 : 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑁2] \ [𝑚]}

})
= (A ⊛ A) ⊕ (A ⊛ A⊥) . (37)

Observe that V⊥ = A⊥ ⊛ A⊥ ⊂ (R𝑁2 )⊛2. Proposition E.3 is

challenging to show because it is not easy to reason about the

nullspace of the system of equations directly. Instead we argue

about the larger vector space R𝑁2 ⊛ R𝑁2
to help identify a basis for

the range space of the polynomial system. Claim E.3 is implied by

the following crucial lemma.

Lemma E.4 (Sym
2→4

does not annihilate any vector in V for

smoothed instances). Consider the followingmatrix𝑀 ∈ R(
𝑛+3
4
)×(𝑚𝑁2−(𝑚

2
) )

formed by columns

columns(𝑀) =
{
Sym

2→4
(𝐴𝑖 ⊗ 𝐴 𝑗 +𝐴 𝑗 ⊗ 𝐴𝑖 ) : 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑚

}
(38)⋃ {

Sym
2→4

(𝐴𝑖 ⊗ 𝐹 𝑗 + 𝐹 𝑗 ⊗ 𝐴𝑖 ) : 1 ≤ 𝑖 ≤ 𝑚,𝑚 + 1 ≤ 𝑗 ≤ 𝑁2

}
.

There exists a constant 𝑐 > 0, such that when𝑚 < 𝑐𝑁2, with proba-
bility at least 1 − exp(−Ω(𝑛)), we have that𝑀 has full column rank
in a robust sense i.e.,

𝜎min (𝑀) ≥ 𝜌2

𝑛𝑂 (1) . (39)
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Note that

(𝑚+1
2

)
+𝑚(𝑁2−𝑚) =𝑚𝑁2−

(𝑚
2

)
is the number of columns

of the above matrix. . The above lemma shows that while Sym
2→4

is an orthogonal projection matrix of rank

(𝑛+3
4

)
acting on a space of

dimension

(𝑁2+1
2

)
(which is larger by a constant factor ≈ 3), it does

not annihilate any vector in the vector space V . In other words we

show that ker(Sym
2→4

) ∩V = {0}. See Figure 7 for an illustration.

Moreover this is true in a robust sense. We now show why the

above lemma suffices for the Proposition E.3.

Proof of Proposition E.3 from Lemma E.4. Weknow that𝜎𝑚 (𝐴) ≥
𝜌/𝑛𝑂 (1)

with probability 1−exp(−Ω(𝑁2)), since𝑚 < 𝑐𝑁2. We con-

dition on this event for the rest of the argument. The proof just

follows from identifying the null space and a dimension counting

argument. From the properties of Sym
2→4

stated earlier, for any

𝑣1, 𝑣2 ∈ R𝑁2 � (R𝑛)⊛2 � R𝑁2
we have

Sym
4
(𝑣1⊗𝑣2) = Sym

2→4

( (𝑣1 ⊗ 𝑣2 + 𝑣2 ⊗ 𝑣1)
2

)
= Sym

2→4
(𝑣1⊗𝑣2) .

Hence, we can restrict to the subspace R𝑁2 ⊛ R𝑁2
as considered in

Figure 7. Now we observe that

∀𝑤 ∈ (A⊥) ⊛ (A⊥), 𝑣 ∈ A ⊛ R𝑁2 , we have ⟨𝑤, 𝑣⟩ = 0, (40)

i.e., ∀𝑗1, 𝑗2 ∈ {𝑚 + 1, . . . , 𝑁2},

∀𝑖 ∈ [𝑚], 𝑣 ∈ R𝑁2 ,

⟨(𝐹 𝑗1 ⊗ 𝐹 𝑗2 + 𝐹 𝑗2 ⊗ 𝐹 𝑗1 ), (𝐴𝑖 ⊗ 𝑣 + 𝑣 ⊗ 𝐴𝑖 )⟩ = 0.

The subspaceV⊥ = A⊥ ⊛A⊥
has dimension

(𝑁2−𝑚+1
2

)
. The space

orthogonal to this is exactlyV and has dimension

dim(V) =
(
𝑁2 + 1

2

)
−

(
𝑁2 −𝑚 + 1

2

)
=
𝑁2 (𝑁2 + 1)

2

− (𝑁2 −𝑚) (𝑁2 −𝑚 + 1)
2

=𝑚𝑁2 −
(
𝑚

2

)
.

Moreover, each of the𝑚𝑁2 −
(𝑚
2

)
columns of the matrix 𝑀 from

(38) belong to the column space of the matrix Sym
4

(
𝐼𝑁2×𝑁2

⊗ 𝐴
)

of Proposition E.3. Hence Lemma E.4 implies Proposition E.3. □

Proof of Lemma E.4 using random restrictions and contraction. We

now proceed to the proof of Lemma E.4. We use the ideas we have

developed in the previous sections to tackle the random matrix

in Lemma E.4. As in Section 5, we will view Sym
2→4

as a tensor

𝑊2→4 ∈ R(
𝑛+3
4
)×𝑁2×𝑁2

; this tensor has rank

(𝑛+3
4

)
when viewed as

a flattened R(
𝑛+3
4
)×𝑁 2

2 matrix. The random matrix in Lemma E.4 is

very similar to the random matrices analyzed in Section 5 through

random contractions. However in this case, we are doing lopsided
“random contractions” corresponding to 𝐴⊛2 +𝐴 ⊗ 𝐹 where

16 𝐴 ∈
R𝑁2×𝑚, 𝐹 ∈ R𝑁2×(𝑁−𝑚)

, and we want the entire set of 𝑚 × 𝑁2

array of vectors in 𝑅 =
(𝑛+3
4

)
dimensions to be linearly independent

in a robust sense. While there is a clear contraction along one mode

(𝑁2 to𝑚 ≪ 𝑁2), there is no effective reduction in the dimension

along the other mode (it remains 𝑁2 since the concatenated matrix

[𝐴, 𝐹 ] still has 𝑁2 columns).

16
Note that this does not quite correspond to a Kronecker product as in Section 5, but

we will see that similar arguments can be applied here.

To tackle this, we will use a stronger property of the tensor𝑊2→4

(the tensor corresponding to the operator Sym
2→4

) that ensures

that we can keep all of the dimensions corresponding to one of

the modes. Consider the slices𝑊1, . . . ,𝑊𝑁2
∈ R𝑅×𝑁2

(it does not

matter which of the last two modes we consider since it is sym-

metric), and let Π⊥
−𝑖 denote the projector perpendicular to the

span of ∪𝑖′∈[𝑁2 ]\{𝑖 }cols(𝑊𝑖′ ). We would like to argue that for all

𝑖 ∈ [𝑁2], Π⊥
−𝑖𝑊𝑖 has a large rank of Ω(𝑁2) in a robust sense i.e.,

∀𝑖 ∈ [𝑁2], 𝜎Ω (𝑁2 ) (Π⊥
−𝑖𝑊𝑖 ) is inverse polynomial with high proba-

bility. However, this is unfortunately too good to be true.

The key idea here is to use the random restriction idea from Sec-

tion ??. Set 𝛿 B 1/16. We define a random set 𝑇 ⊆ [𝑁2] such
that each 𝑖 ∈ [𝑁2] belongs to 𝑇 independently with probability 𝛿

each. For each 𝑖 ∈ [𝑁2], let𝑊𝑖,𝑇 ∈ R𝑅×𝑇 denote the restriction

of𝑊𝑖 to the columns given by 𝑇 . Similarly, let Π⊥
−𝑖,𝑇 denote the

(orthogonal) projection matrix that is perpendicular to the span of

∪𝑖′∈[𝑁2 ]\{𝑖 }cols(𝑊𝑖′,𝑇 ). We show the following claim.

ClaimE.5. (Large relative rank when random restricted to𝑇 ⊆ [𝑁2])
In the above notation, there is a constant 𝑐 ≥ 1/64 such that with
probability 1 − exp(−Ω(𝑁2)) over the random choice of 𝑇 ⊆ [𝑁2]

∀𝑖 ∈ [𝑁2], 𝜎𝑐𝑁2
(Π⊥

−𝑖,𝑇𝑊𝑖,𝑇 ) ≥ 1, (41)

where Π−𝑖,𝑇 is the projector onto the span of the union of the columns
of𝑊𝑖′,𝑇 for all 𝑖′ ≠ 𝑖 . In particular, there exists a 𝑇 ⊆ [𝑁2] such that
(41) holds (deterministically).

Proof. Set 𝛿 B 1/16. In this proof, we will have unordered 4-tuples
represented by multiset of the form {𝑖1, 𝑖2, 𝑖3, 𝑖4} where 𝑖1, . . . , 𝑖4 ∈
[𝑛]; similarly wewill use multisets of the form {𝑖1, 𝑖2} for unordered
pairs. For example {1, 3, 3, 5} is the same as {3, 5, 1, 3}. We will use

the multiset {𝑖1, 𝑖2, 𝑖3, 𝑖4} given by the canonical ordering 1 ≤ 𝑖1 ≤
𝑖2 ≤ 𝑖3 ≤ 𝑖4 ≤ 𝑛 to uniquely represent the unordered 4-tuple. Note

that some indices may be repeated.

Consider any 𝑖 = {𝑖1, 𝑖2} ∈ [𝑁2] where 1 ≤ 𝑖1 ≤ 𝑖2 ≤ 𝑛. We will

now argue about Π−𝑖,𝑇𝑊𝑖 Consider a fixed 𝑗 = { 𝑗1, 𝑗2} ∈ 𝑇 with

𝑗1 ≤ 𝑗2. Now the vector corresponding to𝑊 (:, {𝑖1, 𝑖2}, { 𝑗1, 𝑗2}) has
exactly one entry that is 1 corresponding to the index given by the

unordered tuple {𝑖1, 𝑖2, 𝑗1, 𝑗2}, and 0 otherwise. In other words, if 𝑒𝑖
refers to the 𝑖th standard basis vector (in appropriate dimensions),

then Sym
2→4

(𝑒{𝑖1,𝑖2 } , 𝑒{ 𝑗1, 𝑗2 } ) = 𝑒{𝑖1,𝑖2, 𝑗1, 𝑗2 } . But there are at most(
4

2

)
− 1 other pairs 𝑖′ ∈ [𝑁2], 𝑗 ′ ∈ [𝑁2] whose vectors𝑊 (:, 𝑖′, 𝑗 ′) ∈

R(
𝑛+3
4
)
have a non-zero entry corresponding at the {𝑖1, 𝑖2, 𝑗1, 𝑗2}th

index. Each of these other

(
4

2

)
− 1 choices for 𝑖′ = {𝑖′

1
, 𝑖′
2
} has its

corresponding 𝑗 ′ = { 𝑗 ′
1
, 𝑗 ′
2
} present in 𝑇 with probability at most 𝛿

(note that 𝑗 ′ ≠ 𝑗 since 𝑖′ ≠ 𝑖 , and hence conditioning on 𝑗 ∈ 𝑇 does

not affect whether 𝑗 ′ ∈ 𝑇 ). Hence, by a union bound, we have

P
[
(Π⊥

−𝑖,𝑇𝑊𝑖 )𝑒{𝑖1,𝑖2, 𝑗1, 𝑗2 } = 𝑒{𝑖1,𝑖2, 𝑗1, 𝑗2 }
]
≥ 1 −

((
4

2

)
− 1

)
𝛿 ≥ 1 − 5𝛿.

Moreover the above event is independent for each 𝑗 = { 𝑗1, 𝑗2} ∈
[𝑁2]. The expected number of indices 𝑗 = { 𝑗1, 𝑗2} which belong to

𝑇 and the above event (Π⊥
−𝑖,𝑇𝑊𝑖,𝑇 )𝑒{𝑖1,𝑖2, 𝑗1, 𝑗2 } = 𝑒{𝑖1,𝑖2, 𝑗1, 𝑗2 } holds

is at least

𝛿 (1 − 5𝛿) |𝑁2 | ≥ 𝛿/2|𝑁2 |.
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These unordered pairs { 𝑗1, 𝑗2} that satisfy (Π⊥
−𝑖,𝑇𝑊𝑖,𝑇 )𝑒{𝑖1,𝑖2, 𝑗1, 𝑗2 } =

𝑒{𝑖1,𝑖2, 𝑗1, 𝑗2 } define an entire subspace of vectors 𝑣 such that

∥Π⊥
−𝑖,𝑇𝑊𝑖,𝑇 𝑣 ∥ ≥ ∥𝑣 ∥. Hence by the variational characterization of

singular values and standard large deviation bounds we have that

P
[
𝜎𝛿𝑁2/4 (Π

⊥
−𝑖,𝑇𝑊𝑖,𝑇 ) ≥ 1

]
≥ 1 − exp(−Ω(𝑁2)) .

By a union bound over 𝑖 ∈ [𝑁2], we get the statement of our claim.

□

We now use Claim E.5 along with contraction along the smoothed

direction𝐴 to get our final lemma. Recall 𝑅 =
(𝑛+3
4

)
. Let Φ ∈ R𝑅×𝑁 2

2

denotes the natural matrix representation of Sym
2→4

acting onR𝑁
2

2

obtained by flattening Sym
2→4

appropriately. Define the matrix

𝑀 ∈ R𝑅×((𝑚+1
2
)+𝑚 (𝑁2−𝑚) )

to be the block matrix

𝑀 =

[
Φ(𝐴 ⊛ 𝐴) , Φ(𝐴 ⊗ 𝐹 )

]
= Φ

[
𝐴 ⊛ 𝐴 , 𝐴 ⊗ 𝐹

]
,

where 𝐹 ∈ R𝑁2×(𝑁2−𝑚)
matrix with columns 𝐹𝑚+1, . . . , 𝐹𝑁2

. To

analyze the least singular value of 𝑀 , we first need to apply the

decoupling technique in used Lemma C.4.

Let𝐴 = 𝐵+𝑍1+𝑍2 where𝑍1, 𝑍2 ∈ R𝑁2×𝑚
are randomGaussian ma-

trixes with independent entries 𝑁 (0, 𝜌2
1
) and 𝑁 (0, 𝜌2

2
) respectively

with 𝜌2
1
+ 𝜌2

2
= 𝜌2. Then by the arguments in Lemma C.4, it suffices

to consider the matrix 𝑀′ ∈ R𝑅×𝑚𝑁2
given below and prove an

inverse polynomial lower bound on its least singular value. That is,

we need to show that with probability at least 1 − exp(−Ω(𝑛))

𝜎𝑚𝑁2

(
𝑀′) ≥ Ω(𝜌)

𝑛𝑂 (1) , where (42)

𝑀′ B Φ
[
(𝐵 + 𝑍1) ⊗ (𝐵 + 𝑍1 + 2𝑍2) , (𝐵 + 𝑍1 + 𝑍2) ⊗ 𝐹

]
.

(43)

The above bound (42) will follow from the following two simpler

claims.

Claim E.6. In the above notation, the matrix𝑄 = [𝐵 +𝑍1 + 2𝑍2 , 𝐹 ]
is full rank in a robust sense i.e., with probability 1 − exp(−Ω(𝑁2))

𝜎𝑁2
(𝑄) ≥ 𝑐𝜌

𝑛𝑂 (1) ,

for some absolute constant 𝑐 > 0.

Note that the matrix [𝐵 + 𝑍1 + 𝑍2 , 𝐹 ] = [𝐴 , 𝐹 ] has inverse

polynomial least singular value by design, since 𝐹 was chosen to

complete the basis and 𝜎𝑚 (𝐴) is lower bounded w.h.p. We just need

to show that adding the random matrix [𝑍2 , 0] does not affect
its least singular value. This is shown by rewriting the random

matrices and a standard net argument in Appendix ??. The second
claim shows that after applying a random modal contraction with

the random matrix 𝑈 = [𝐵 + 𝑍1 , 𝑍2] ∈ R𝑁2×(2𝑚)
, the matrix is

well-conditioned.

Proof. Let 𝑄1 =
(
𝐵 + 𝑍1 + 𝑍2 , 𝐹

)
∈ R𝑁2×𝑁2

and 𝑄2 = (𝑍2 , 0) ∈
R𝑁2×𝑁2

. First we note that with probability 1−exp(−Ω(𝑁2)), there
exists constants 𝑐1, 𝑐2 > 0 such that

𝜎𝑁2
(𝑄1) = 𝜎𝑁2

(
𝐵 + 𝑍1 + 𝑍2 , 𝐹

)
= 𝜎𝑁2

(𝐴, 𝐹 ) ≥ 𝑐2𝜌

𝑛𝑐1
C 𝜏𝜌.

This is because 𝜎𝑚 (𝐴) ≥ 𝜌

𝑛Ω (1) with high probability by standard

random matrix theory, and since 𝐹 was chosen to complete the

basis. We just need to show that adding the random matrix𝑄2 does

not affect decrease its least singular value by a lot.

Recall 𝑍1 ∼ 𝑁 (0, 𝜌2
1
)𝑁2×𝑚, 𝑍2 ∼ 𝑁 (0, 𝜌2

2
)𝑁2×𝑚

. Next we rewrite

the randommatrices𝑍1+2𝑍2 and𝑍2 as follows after Gram-Schmidt

orthogonalization. Suppose 𝑌1, 𝑌2 ∈ R𝑁2×𝑚
are random matrices

with independent entries given by

𝑌1 ∼𝑖𝑖𝑑𝑁 (0, 𝜆2
1
)𝑁2×𝑚, 𝑌2 ∼𝑖𝑖𝑑 𝑁 (0, 𝜆2

2
)𝑁2×𝑚,

where 𝜆2
1
= 𝜌2

1
+ 𝜌2

2
, 𝜆2

2
=

𝜌2
1
𝜌2
2

𝜌2
1
+ 𝜌2

2

,

𝑍1 + 𝑍2 =𝑌1,

and 𝑍2 =
𝜌2
2

𝜌2
1
+𝜌2

2

𝑌1 + 𝑌2,

i.e., 𝑌2 =
1

𝜌2
1
+𝜌2

2

(𝜌2
2
𝑍1 − 𝜌21𝑍2) (44)

Note that 𝑌1 and 𝑌2 are mutually independent (these are Gaussian

r.v.s, and one can verify entrywise that their correlation is 0). Let

𝛾 = 𝜌2
2
/(𝜌2

1
+𝜌2

2
). Note that𝛾 ∈ [𝑐5𝑁 −𝑐4

2
, 𝑐6𝑁

𝑐4
2
] for some constants

𝑐4, 𝑐5, 𝑐6 > 0. We know that𝑄1 = (𝐵+𝑌1 | 𝐹 ) and𝑄2 = (𝛾𝑌1+𝑌2 | 0).

In the rest of this proof we condition on 𝜎𝑁2
(𝑄1) ≥ Consider any

test unit vector 𝛼 ∈ R𝑁2
, and let 𝛼 [𝑚] be the restriction to the first

𝑚 coordinates. We will now show that for any constant 𝐶 > 0,

∥𝑄𝛼 ∥ ≥ Ω(𝜌2/𝑛𝑂 (𝐶 ) ) with probability 1 − exp(−𝐶𝑁2 log(𝑁2)).
We have

𝑄𝛼 = 𝑄1𝛼 + 𝛾𝑌1𝛼 [𝑚] + 𝑌2𝛼 [𝑚] , where ∥𝑄1𝛼 ∥2 ≥ 𝜏𝜌.

We know further that with high probability ∥𝑌1∥, ∥𝑌2∥ ≤ 𝑐′𝜌
√
𝑁2

for some constant 𝑐′ > 0. We split into two cases depending on

whether (a) ∥𝛼 [𝑚] ∥2 ≤ 𝜏/(2𝑐′ (1 + 𝛾)
√
𝑁2), or (b) otherwise.

In case (a), we have

∥𝑄𝛼 ∥2 ≥ ∥𝑄1𝛼 ∥2 − ∥𝛾𝑌1𝛼 [𝑚] ∥2 − ∥𝑌2𝛼 [𝑚] ∥2
≥ 𝜏𝜌 − 𝑐′

√︁
𝑁2𝜌 (𝛾 + 1)∥𝛼 [𝑚] ∥2

≥ 𝜏

2

.

In case (b) ∥𝛼 [𝑚] ∥2 ≥ 𝜏/(2𝑐′ (1+𝛾)
√
𝑁2). We use the anticoncentra-

tion from the Gaussian r.v. 𝑌2𝛼 [𝑚] . Let 𝛽 = 𝑄1𝛼 + 𝛾𝑌1𝛼 [𝑚] ∈ R𝑁2
.

For matrices 𝑄,𝑌2 ∈ R𝑁2×𝑚
, let 𝑄 (𝑖), 𝑌2 (𝑖) ∈ R𝑚 represent the 𝑖th

rows. We have for some absolute constant 𝑐7 > 0

P
[
∥𝑄𝛼 ∥2 ≤ 𝜀

]
≤ P

[
∀𝑖 ∈ [𝑁2], |⟨𝑄 (𝑖), 𝛼⟩| ≤ 𝜀

]
= P

[
∀𝑖 ∈ [𝑁2], |𝛽𝑖 + ⟨𝑌2 (𝑖), 𝛼 [𝑚]⟩| ≤ 𝜀

]
= P

𝑔1,...,𝑔𝑁
2
∼𝑖𝑖𝑑

𝑁 (0,𝜆2 ∥𝛼 [𝑚] ∥ )

[
∀𝑖 ∈ [𝑁2], |𝛽𝑖 + 𝑔𝑖 | ≤ 𝜀

]
≤

( 𝜀 · (1 + 𝛾)√𝑁2

𝑐7𝜆2𝜏

)𝑁2

≤ 𝑁
−𝐶𝑁2

2
,

by setting 𝜀 appropriately as 𝜀 = 𝑐7𝜏𝜆2/((1+𝛾)𝑁𝐶+1
2

), which is still

inverse polynomial in 𝑁2. Now by doing a standard union bound

argument over a net of 𝛼 ∈ R𝑁2
, the claim follows. □
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Claim E.7. Let 𝑈 = [𝐵 + 𝑍1 , 𝑍2]. Suppose the matrix 𝑊 ∈
R𝑅×(2𝑚 ·𝑁2 ) is obtained by random modal contraction applied to
Sym

2→4
(along the secondmode). Formally, supposeΦ1,Φ2, . . . ,Φ𝑁2

∈
R𝑅×𝑁2 represent the matrix slices of Φ, and suppose ∀𝑖 ∈ [𝑁2]𝑊𝑖 =
Φ𝑖𝑈 where random matrix𝑈 = [𝐵 +𝑍1 , 𝑍2] ∈ R𝑁2×(2𝑚) . Then the
matrix𝑊 = [𝑊1 |𝑊2 | . . . |𝑊𝑁2

] satisfies with probability at least
1 − exp(−Ω(𝑁2)) that 𝜎 (2𝑚𝑁2 )

(
𝑊

)
≥ 𝑐′𝜌/𝑛𝑐 for absolute constants

𝑐, 𝑐′ > 0

Proof. We will use Claim E.5 with the matrix Φ. Let 𝑇 ⊆ [𝑁2] be
any subset that satisfies (41). Set 𝑠 = 𝑁2, 𝜀 = 𝛿/4, 𝑘 = |𝑇 |. We will set

the matrix𝐴1 = Φ1,𝑇 , . . . , 𝐴𝑁2
= Φ𝑁2,𝑇 . Let �̃� = 𝑈𝑇 (rows restricted

to𝑇 ) and let𝑈 ′ = 𝑈 [𝑁2 ]\𝑇 ; note that they are mutually independent.

For each 𝑖 ∈ [𝑁2], 𝐶𝑖 = Φ𝑖,[𝑁2 ]\𝑇𝑈
′
. For each 𝑖 ∈ [𝑁2],𝑊𝑖 =

𝐶𝑖 +𝐴𝑖�̃� . Hence applying Lemma 5.5 we get the claim. □

With Claims E.6 and E.7 in hand we can now establish (42) complete

the proof of Lemma E.4. Consider the matrix𝑀 ∈ R𝑅×(2𝑚𝑁2 )
given

by

𝑀 = Φ
( [
𝐵 + 𝑍1 , 𝑍2

]
⊗

[
(𝐵 + 𝑍1 + 2𝑍2) , 𝐹

] )
, (45)

= Φ
(
𝑈 ⊗ 𝑄

)
,

where𝑈 = [𝐵 + 𝑍1 , 𝑍2] ∈ R𝑁2×(2𝑚) ,

and 𝑄 = [𝐵 + 𝑍1 + 2𝑍2 , 𝐹 ] ∈ R𝑁2×𝑁2 ,

as defined in the earlier claims. Note that 𝑀′ ∈ R𝑅×𝑚𝑁2
is a sub-

matrix of 𝑀 ∈ R𝑅×(2𝑚𝑁2 )
. Hence a least singular value bound

on 𝑀 (note we show it has full column rank) implies the same

least singular value bound for𝑀′
. Suppose𝑊 ∈ R𝑅×(2𝑚𝑁2 )

is the

matrix defined in Claim E.7 and𝑊 (1) , . . . ,𝑊 (2𝑚) ∈ R𝑅×𝑁2
are cor-

responding blocks of𝑊 that correspond to the matrix slices taken

along the second mode of the tensor corresponding to𝑊 . Then up

to rearranging columns

𝑀 B
(
𝑊 (1)𝑄 , 𝑊 (2)𝑄 , . . . ,𝑊 (2𝑚)𝑄

)
(46)

=

(
𝑊 (1) , 𝑊 (2) , . . . ,𝑊 (2𝑚)

) (
𝐼2𝑚×2𝑚 ⊗ 𝑄

)
. (47)

We condition on the success events in both Claim E.6 and Claim E.7;

by a union bound, they both hold with probability at least 1 −
2 exp(−Ω(𝑛)). From Claim E.7, the matrix𝑊 defined in Claim E.7

has

𝜎2𝑚𝑁2

(
𝑊 (1) , 𝑊 (2) , . . . ,𝑊 (2𝑚)

)
= 𝜎2𝑚𝑁2

(
𝑊

)
≥ 𝑐′𝜌

𝑛𝑂 (1) . (48)

From Claim E.6,

𝜎2𝑚𝑁2

(
𝐼2𝑚×2𝑚 ⊗ 𝑄

)
= 𝜎𝑁2

(𝑄) ≥ 𝑐′′𝜌

𝑛𝑂 (1) . (49)

Combining (47), (48) and (49), we finish the proof of the lemma. □
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